
If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL, are arranged as in a dictionary, then the position of the word SMALL is
$(a)$${46^{th}}$
$(b)$${59^{th}}$
$(c)$${52^{nd}}$
$(d)$${58^{th}}$
Answer
162k+ views
Hint-Try and form all lexicographically smaller alphabets than word SMALL in the dictionary.
Here we have to tell the position of the word SMALL in the dictionary.
Now let’s fix A in the first position, then we get
A_ _ _ _,
Now we are left with 4 places in which we need to arrange 4 alphabets that is M, A, L, L. As L is repeating twice so the total ways of arranging 4 letters in 4 places in which two letters are repeating is \[\frac{{4!}}{{2!}} = \frac{{4 \times 3 \times 2}}{{2 \times 1}} = 12\]
Now let’s fix L in the first position, then we get
L_ _ _ _
Now we are left with 4 places in which we need to arrange 4 alphabets that is M, A, L, S. As no letter is repeated twice so the total ways of arranging 4 letters in 4 places is\[4! = 4 \times 3 \times 2 \times 1 = 24\]
Now let’s fix M in the first position, then we get
M_ _ _ _
Now we are left with 4 places in which we need to arrange 4 alphabets that is S, A, L, L. As L is repeating twice so the total ways of arranging 4 letters in 4 places in which two letters are repeating is \[\frac{{4!}}{{2!}} = \frac{{4 \times 3 \times 2}}{{2 \times 1}} = 12\]
Now let’s fix S in the first position and A in second position, then we get
S A _ _ _
Now we are left with 3 places in which we need to arrange 3 alphabets that is L, L, and M. As L is repeating twice so the total ways of arranging 3 letters in 3 places in which two letters are repeating is \[\frac{{3!}}{{2!}} = \frac{{3 \times 2}}{{2 \times 1}} = 3\]
Now let’s fix S in the first position and L in second position, then we get
S L _ _ _
Now we are left with 3 places in which we need to arrange 3 alphabets that is M, A, L. As no letter is repeated twice so the total ways of arranging 3 letters in 3 places is\[3! = 3 \times 2 \times 1 = 6\]
Now let’s fix S in the first position and M in second position, then if we arrange in alphabetical order the next word we get is SMALL only.
Hence the position of SMALL in dictionary is
Position $ = 12 + 24 + 12 + 3 + 6 + 1 = {58^{th}}$
Thus (d) is the right option
Note- The key concept while solving such problems is to make all the possible cases of words that are lexicographically smaller than the given word in the dictionary, this eventually gives us the position of the word in the dictionary.
Here we have to tell the position of the word SMALL in the dictionary.
Now let’s fix A in the first position, then we get
A_ _ _ _,
Now we are left with 4 places in which we need to arrange 4 alphabets that is M, A, L, L. As L is repeating twice so the total ways of arranging 4 letters in 4 places in which two letters are repeating is \[\frac{{4!}}{{2!}} = \frac{{4 \times 3 \times 2}}{{2 \times 1}} = 12\]
Now let’s fix L in the first position, then we get
L_ _ _ _
Now we are left with 4 places in which we need to arrange 4 alphabets that is M, A, L, S. As no letter is repeated twice so the total ways of arranging 4 letters in 4 places is\[4! = 4 \times 3 \times 2 \times 1 = 24\]
Now let’s fix M in the first position, then we get
M_ _ _ _
Now we are left with 4 places in which we need to arrange 4 alphabets that is S, A, L, L. As L is repeating twice so the total ways of arranging 4 letters in 4 places in which two letters are repeating is \[\frac{{4!}}{{2!}} = \frac{{4 \times 3 \times 2}}{{2 \times 1}} = 12\]
Now let’s fix S in the first position and A in second position, then we get
S A _ _ _
Now we are left with 3 places in which we need to arrange 3 alphabets that is L, L, and M. As L is repeating twice so the total ways of arranging 3 letters in 3 places in which two letters are repeating is \[\frac{{3!}}{{2!}} = \frac{{3 \times 2}}{{2 \times 1}} = 3\]
Now let’s fix S in the first position and L in second position, then we get
S L _ _ _
Now we are left with 3 places in which we need to arrange 3 alphabets that is M, A, L. As no letter is repeated twice so the total ways of arranging 3 letters in 3 places is\[3! = 3 \times 2 \times 1 = 6\]
Now let’s fix S in the first position and M in second position, then if we arrange in alphabetical order the next word we get is SMALL only.
Hence the position of SMALL in dictionary is
Position $ = 12 + 24 + 12 + 3 + 6 + 1 = {58^{th}}$
Thus (d) is the right option
Note- The key concept while solving such problems is to make all the possible cases of words that are lexicographically smaller than the given word in the dictionary, this eventually gives us the position of the word in the dictionary.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
