
If $A=\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$ then AB is equal to?
A . $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-1 & 2 & 4 \\
\end{matrix} \right)$
B. $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
C. $\left( \begin{matrix}
1 & 2 & 4 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
D. None of these
Answer
232.8k+ views
Hint: Given two matrices A and B of order $(3\times 3)$. We have to find AB. In order to multiply the matrices, both the matrix are of the same order. As the given matrices are of the same order, so we multiply them to get the desirable answer.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$ and $B=\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$
In matrix A, there are 3 rows and 3 columns.
Similarly in matrix B, there are 3 rows and 3 columns.
So both are of order $(3\times 3)$ matrix
The basic representation of $3\times 3$ is
$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
Then AB will represent as $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
AB = $\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$$\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$= $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
The first digit of the first row is the sum of the multiplication of the first row of matrix A and the first column of matrix B.
That is ${{a}_{11}}=1\times 2+3\times 1+0\times -1$
Then ${{a}_{11}}=5$
Similarly, for the second digit of the first row, it is the sum of the multiplication of the first row of matrix A with the second column of matrix B.
That is ${{a}_{12}}=1\times 3+3\times 2+0\times 1$
Then ${{a}_{12}}=9$
Similarly, for the third digit of the first row, it is the sum of values of the first row of matrix A with the third column of matrix B.
That is ${{a}_{13}}=1\times 4+3\times 3+0\times 2$
Then ${{a}_{13}}=13$
Similar steps we followed to find all the values of the given matrix.
${{a}_{21}}=-1\times 2+2\times 1+1\times -1$
Then${{a}_{21}}=-1$
${{a}_{22}}=-1\times 3+2\times 2+1\times 1$
${{a}_{22}}=2$
${{a}_{23}}=-1\times 4+2\times 3+1\times 2$
Then ${{a}_{23}}=4$
Similarly, we find the third row
${{a}_{31}}=0\times 2+0\times 1+2\times -1$
Then ${{a}_{31}}=-2$
${{a}_{32}}=0\times 3+0\times 2+2\times 1$
Then ${{a}_{32}}=2$
${{a}_{33}}=0\times 4+0\times 3+2\times 2$
Then ${{a}_{33}}=4$
Substituting all the values in the AB matrix, we get
$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$= $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
Thus the product of matrix A and B is $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Remember that while multiplying the matrices the elements (that is ) ${{a}_{11}},{{a}_{12}}$ represents the row number of matrix 1 and column number of matrix 2. For example, ${{a}_{11}}$ tells us about the multiplication of the first row of matrix 1 with the first column of matrix 2. ${{a}_{12}}$ represents the multiplication of the first row of the matrix 1 with the second column of the matrix 2 and so on.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$ and $B=\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$
In matrix A, there are 3 rows and 3 columns.
Similarly in matrix B, there are 3 rows and 3 columns.
So both are of order $(3\times 3)$ matrix
The basic representation of $3\times 3$ is
$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
Then AB will represent as $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
AB = $\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$$\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$= $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
The first digit of the first row is the sum of the multiplication of the first row of matrix A and the first column of matrix B.
That is ${{a}_{11}}=1\times 2+3\times 1+0\times -1$
Then ${{a}_{11}}=5$
Similarly, for the second digit of the first row, it is the sum of the multiplication of the first row of matrix A with the second column of matrix B.
That is ${{a}_{12}}=1\times 3+3\times 2+0\times 1$
Then ${{a}_{12}}=9$
Similarly, for the third digit of the first row, it is the sum of values of the first row of matrix A with the third column of matrix B.
That is ${{a}_{13}}=1\times 4+3\times 3+0\times 2$
Then ${{a}_{13}}=13$
Similar steps we followed to find all the values of the given matrix.
${{a}_{21}}=-1\times 2+2\times 1+1\times -1$
Then${{a}_{21}}=-1$
${{a}_{22}}=-1\times 3+2\times 2+1\times 1$
${{a}_{22}}=2$
${{a}_{23}}=-1\times 4+2\times 3+1\times 2$
Then ${{a}_{23}}=4$
Similarly, we find the third row
${{a}_{31}}=0\times 2+0\times 1+2\times -1$
Then ${{a}_{31}}=-2$
${{a}_{32}}=0\times 3+0\times 2+2\times 1$
Then ${{a}_{32}}=2$
${{a}_{33}}=0\times 4+0\times 3+2\times 2$
Then ${{a}_{33}}=4$
Substituting all the values in the AB matrix, we get
$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$= $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
Thus the product of matrix A and B is $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Remember that while multiplying the matrices the elements (that is ) ${{a}_{11}},{{a}_{12}}$ represents the row number of matrix 1 and column number of matrix 2. For example, ${{a}_{11}}$ tells us about the multiplication of the first row of matrix 1 with the first column of matrix 2. ${{a}_{12}}$ represents the multiplication of the first row of the matrix 1 with the second column of the matrix 2 and so on.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

