
If $A=\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$ then AB is equal to?
A . $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-1 & 2 & 4 \\
\end{matrix} \right)$
B. $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
C. $\left( \begin{matrix}
1 & 2 & 4 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
D. None of these
Answer
164.7k+ views
Hint: Given two matrices A and B of order $(3\times 3)$. We have to find AB. In order to multiply the matrices, both the matrix are of the same order. As the given matrices are of the same order, so we multiply them to get the desirable answer.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$ and $B=\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$
In matrix A, there are 3 rows and 3 columns.
Similarly in matrix B, there are 3 rows and 3 columns.
So both are of order $(3\times 3)$ matrix
The basic representation of $3\times 3$ is
$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
Then AB will represent as $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
AB = $\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$$\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$= $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
The first digit of the first row is the sum of the multiplication of the first row of matrix A and the first column of matrix B.
That is ${{a}_{11}}=1\times 2+3\times 1+0\times -1$
Then ${{a}_{11}}=5$
Similarly, for the second digit of the first row, it is the sum of the multiplication of the first row of matrix A with the second column of matrix B.
That is ${{a}_{12}}=1\times 3+3\times 2+0\times 1$
Then ${{a}_{12}}=9$
Similarly, for the third digit of the first row, it is the sum of values of the first row of matrix A with the third column of matrix B.
That is ${{a}_{13}}=1\times 4+3\times 3+0\times 2$
Then ${{a}_{13}}=13$
Similar steps we followed to find all the values of the given matrix.
${{a}_{21}}=-1\times 2+2\times 1+1\times -1$
Then${{a}_{21}}=-1$
${{a}_{22}}=-1\times 3+2\times 2+1\times 1$
${{a}_{22}}=2$
${{a}_{23}}=-1\times 4+2\times 3+1\times 2$
Then ${{a}_{23}}=4$
Similarly, we find the third row
${{a}_{31}}=0\times 2+0\times 1+2\times -1$
Then ${{a}_{31}}=-2$
${{a}_{32}}=0\times 3+0\times 2+2\times 1$
Then ${{a}_{32}}=2$
${{a}_{33}}=0\times 4+0\times 3+2\times 2$
Then ${{a}_{33}}=4$
Substituting all the values in the AB matrix, we get
$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$= $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
Thus the product of matrix A and B is $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Remember that while multiplying the matrices the elements (that is ) ${{a}_{11}},{{a}_{12}}$ represents the row number of matrix 1 and column number of matrix 2. For example, ${{a}_{11}}$ tells us about the multiplication of the first row of matrix 1 with the first column of matrix 2. ${{a}_{12}}$ represents the multiplication of the first row of the matrix 1 with the second column of the matrix 2 and so on.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$ and $B=\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$
In matrix A, there are 3 rows and 3 columns.
Similarly in matrix B, there are 3 rows and 3 columns.
So both are of order $(3\times 3)$ matrix
The basic representation of $3\times 3$ is
$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
Then AB will represent as $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
AB = $\left( \begin{matrix}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2 \\
\end{matrix} \right)$$\left( \begin{matrix}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2 \\
\end{matrix} \right)$= $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$
The first digit of the first row is the sum of the multiplication of the first row of matrix A and the first column of matrix B.
That is ${{a}_{11}}=1\times 2+3\times 1+0\times -1$
Then ${{a}_{11}}=5$
Similarly, for the second digit of the first row, it is the sum of the multiplication of the first row of matrix A with the second column of matrix B.
That is ${{a}_{12}}=1\times 3+3\times 2+0\times 1$
Then ${{a}_{12}}=9$
Similarly, for the third digit of the first row, it is the sum of values of the first row of matrix A with the third column of matrix B.
That is ${{a}_{13}}=1\times 4+3\times 3+0\times 2$
Then ${{a}_{13}}=13$
Similar steps we followed to find all the values of the given matrix.
${{a}_{21}}=-1\times 2+2\times 1+1\times -1$
Then${{a}_{21}}=-1$
${{a}_{22}}=-1\times 3+2\times 2+1\times 1$
${{a}_{22}}=2$
${{a}_{23}}=-1\times 4+2\times 3+1\times 2$
Then ${{a}_{23}}=4$
Similarly, we find the third row
${{a}_{31}}=0\times 2+0\times 1+2\times -1$
Then ${{a}_{31}}=-2$
${{a}_{32}}=0\times 3+0\times 2+2\times 1$
Then ${{a}_{32}}=2$
${{a}_{33}}=0\times 4+0\times 3+2\times 2$
Then ${{a}_{33}}=4$
Substituting all the values in the AB matrix, we get
$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$= $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
Thus the product of matrix A and B is $\left( \begin{matrix}
5 & 9 & 13 \\
-1 & 2 & 4 \\
-2 & 2 & 4 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Remember that while multiplying the matrices the elements (that is ) ${{a}_{11}},{{a}_{12}}$ represents the row number of matrix 1 and column number of matrix 2. For example, ${{a}_{11}}$ tells us about the multiplication of the first row of matrix 1 with the first column of matrix 2. ${{a}_{12}}$ represents the multiplication of the first row of the matrix 1 with the second column of the matrix 2 and so on.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
