
If $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$ and A adjA $=\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}$, then k is equal to
A. 0
B. 1
C. $\sin \alpha \cos \alpha$
D. $\cos 2 \alpha$
Answer
233.1k+ views
Hint: We are given a matrix, $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$. We have to find the value of k in the product of A and adjoint matrix of A.
Complete step-by-step solution: We have, $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$. Now to find the adjoint matrix, interchange the diagonal elements and multiply the off-diagonal elements by a negative sign.
Therefore, the adjoint matrix of A, adj A=$\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$.
So, A (adj A)=$\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}\cos \alpha \times \cos \alpha+\sin \alpha \times \sin \alpha & \cos \alpha \times(-\sin \alpha)+\sin \alpha \times \cos \alpha \\
(-\sin \alpha) \times \cos \alpha+\cos \alpha \times \sin \alpha & (-\sin \alpha) \times(-\sin \alpha)+\cos \alpha \times \cos \alpha
\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}
\cos ^{2} \alpha+\sin ^{2} \alpha & -\cos \alpha \sin \alpha+\cos \alpha \sin \alpha \\
-\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}1 & 0 \\0 & 1
\end{bmatrix}$, since we have $\cos ^{2} \alpha+\sin ^{2} \alpha=1$
Therefore, the value of k is 1 .
The correct answer is Option B.
Note: Recall the formula (adj A) A=A(adj A)=|A| I, where I is the identity matrix. If we look at the question we need to calculate |A|I, so it is enough to calculate the determinant of the given matrix instead of multiplying A and adj A.
Complete step-by-step solution: We have, $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$. Now to find the adjoint matrix, interchange the diagonal elements and multiply the off-diagonal elements by a negative sign.
Therefore, the adjoint matrix of A, adj A=$\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$.
So, A (adj A)=$\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}\cos \alpha \times \cos \alpha+\sin \alpha \times \sin \alpha & \cos \alpha \times(-\sin \alpha)+\sin \alpha \times \cos \alpha \\
(-\sin \alpha) \times \cos \alpha+\cos \alpha \times \sin \alpha & (-\sin \alpha) \times(-\sin \alpha)+\cos \alpha \times \cos \alpha
\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}
\cos ^{2} \alpha+\sin ^{2} \alpha & -\cos \alpha \sin \alpha+\cos \alpha \sin \alpha \\
-\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}1 & 0 \\0 & 1
\end{bmatrix}$, since we have $\cos ^{2} \alpha+\sin ^{2} \alpha=1$
Therefore, the value of k is 1 .
The correct answer is Option B.
Note: Recall the formula (adj A) A=A(adj A)=|A| I, where I is the identity matrix. If we look at the question we need to calculate |A|I, so it is enough to calculate the determinant of the given matrix instead of multiplying A and adj A.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

