
If $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$ and A adjA $=\begin{bmatrix}k & 0 \\ 0 & k\end{bmatrix}$, then k is equal to
A. 0
B. 1
C. $\sin \alpha \cos \alpha$
D. $\cos 2 \alpha$
Answer
164.1k+ views
Hint: We are given a matrix, $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$. We have to find the value of k in the product of A and adjoint matrix of A.
Complete step-by-step solution: We have, $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$. Now to find the adjoint matrix, interchange the diagonal elements and multiply the off-diagonal elements by a negative sign.
Therefore, the adjoint matrix of A, adj A=$\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$.
So, A (adj A)=$\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}\cos \alpha \times \cos \alpha+\sin \alpha \times \sin \alpha & \cos \alpha \times(-\sin \alpha)+\sin \alpha \times \cos \alpha \\
(-\sin \alpha) \times \cos \alpha+\cos \alpha \times \sin \alpha & (-\sin \alpha) \times(-\sin \alpha)+\cos \alpha \times \cos \alpha
\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}
\cos ^{2} \alpha+\sin ^{2} \alpha & -\cos \alpha \sin \alpha+\cos \alpha \sin \alpha \\
-\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}1 & 0 \\0 & 1
\end{bmatrix}$, since we have $\cos ^{2} \alpha+\sin ^{2} \alpha=1$
Therefore, the value of k is 1 .
The correct answer is Option B.
Note: Recall the formula (adj A) A=A(adj A)=|A| I, where I is the identity matrix. If we look at the question we need to calculate |A|I, so it is enough to calculate the determinant of the given matrix instead of multiplying A and adj A.
Complete step-by-step solution: We have, $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$. Now to find the adjoint matrix, interchange the diagonal elements and multiply the off-diagonal elements by a negative sign.
Therefore, the adjoint matrix of A, adj A=$\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$.
So, A (adj A)=$\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}\cos \alpha \times \cos \alpha+\sin \alpha \times \sin \alpha & \cos \alpha \times(-\sin \alpha)+\sin \alpha \times \cos \alpha \\
(-\sin \alpha) \times \cos \alpha+\cos \alpha \times \sin \alpha & (-\sin \alpha) \times(-\sin \alpha)+\cos \alpha \times \cos \alpha
\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}
\cos ^{2} \alpha+\sin ^{2} \alpha & -\cos \alpha \sin \alpha+\cos \alpha \sin \alpha \\
-\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha
\end{bmatrix}$
$\begin{bmatrix}k & 0 \\0 & k\end{bmatrix}=\begin{bmatrix}1 & 0 \\0 & 1
\end{bmatrix}$, since we have $\cos ^{2} \alpha+\sin ^{2} \alpha=1$
Therefore, the value of k is 1 .
The correct answer is Option B.
Note: Recall the formula (adj A) A=A(adj A)=|A| I, where I is the identity matrix. If we look at the question we need to calculate |A|I, so it is enough to calculate the determinant of the given matrix instead of multiplying A and adj A.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions
