
If \[{a^{1/x}} = {b^{1/y}} = {c^{1/z}}\] and \[a,b,c\] are in G.P., then \[x,y,z\] will be in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
163.5k+ views
Hint:
We know that in G.P., there is a common ratio between the series' consecutive terms. So we can write \[b = ar\],\[c = br\], and \[c = a{r^2}\]. Enter these values into \[{a^{1/x}} = {b^{1/y}} = {c^{1/z}}\] and solve. Then simplify two terms to get the values in base ‘a’ and ‘r’ on either side. Then, using two different terms, solve them in the same way. Compare the outcomes and equate terms with the same base. Solve it to find out the answer.
Formula used:
The arithmetic progression is \[a,b,c\]
\[(b - a) = (c - b)\]
\[2b = a+c\]
The geometric progression is \[a,b,c\]
\[{b^2} = ac\].
Complete step-by-step solution:
We have been given in the question that \[{a^{1/x}} = {b^{1/y}} = {c^{1/z}}\]and\[a,b,c\] are in geometric progression.
Let us assume for the given expression
\[{a^{1/x}} = {b^{1/y}} = {c^{1/z}} = p\]
So, on solving for each term, it becomes
\[a = {p^x},b = {p^y},c = {p^z}\]
Since, we already know that \[a,b,c\] are in geometric progression.
Then,
\[ \Rightarrow {b^2} = ac\]--(1)
Now, putting the value of \[a,b,c\] in the equation (1), we get
\[{\left( {{p^y}} \right)^2} = \left( {{p^x}} \right)\left( {{p^z}} \right)\]
Apply exponent rules for the above equation:
When the bases are same, we have to add the powers according to the rules of multiplying exponents.
\[ \Rightarrow {p^{2y}} = {p^{(x + z)}}\]
Equating powers on both sides, we get
\[2y = x + z\]
So \[x,y\]and\[z\] are in Arithmetic Progression.
Therefore, If \[{a^{1/x}} = {b^{1/y}} = {c^{1/z}}\] and \[a,b,c\] are in G.P., then \[x,y,z\] will be in A.P
Hence, the correct option is (A).
Note:
Here, we have taken the first and seconds terms and first and third terms, we can easily prove the equation given in the question, because the calculations are easy. The equation we will get will become complex, if we chose some other terms and thus results in consuming more time in solving.
We know that in G.P., there is a common ratio between the series' consecutive terms. So we can write \[b = ar\],\[c = br\], and \[c = a{r^2}\]. Enter these values into \[{a^{1/x}} = {b^{1/y}} = {c^{1/z}}\] and solve. Then simplify two terms to get the values in base ‘a’ and ‘r’ on either side. Then, using two different terms, solve them in the same way. Compare the outcomes and equate terms with the same base. Solve it to find out the answer.
Formula used:
The arithmetic progression is \[a,b,c\]
\[(b - a) = (c - b)\]
\[2b = a+c\]
The geometric progression is \[a,b,c\]
\[{b^2} = ac\].
Complete step-by-step solution:
We have been given in the question that \[{a^{1/x}} = {b^{1/y}} = {c^{1/z}}\]and\[a,b,c\] are in geometric progression.
Let us assume for the given expression
\[{a^{1/x}} = {b^{1/y}} = {c^{1/z}} = p\]
So, on solving for each term, it becomes
\[a = {p^x},b = {p^y},c = {p^z}\]
Since, we already know that \[a,b,c\] are in geometric progression.
Then,
\[ \Rightarrow {b^2} = ac\]--(1)
Now, putting the value of \[a,b,c\] in the equation (1), we get
\[{\left( {{p^y}} \right)^2} = \left( {{p^x}} \right)\left( {{p^z}} \right)\]
Apply exponent rules for the above equation:
When the bases are same, we have to add the powers according to the rules of multiplying exponents.
\[ \Rightarrow {p^{2y}} = {p^{(x + z)}}\]
Equating powers on both sides, we get
\[2y = x + z\]
So \[x,y\]and\[z\] are in Arithmetic Progression.
Therefore, If \[{a^{1/x}} = {b^{1/y}} = {c^{1/z}}\] and \[a,b,c\] are in G.P., then \[x,y,z\] will be in A.P
Hence, the correct option is (A).
Note:
Here, we have taken the first and seconds terms and first and third terms, we can easily prove the equation given in the question, because the calculations are easy. The equation we will get will become complex, if we chose some other terms and thus results in consuming more time in solving.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
