
If \[{A_1},{A_2}\] are the two A.M.'s between two numbers \[a\] and \[b\] \[{G_1},{G_2}\] be two G.M.'s between same two numbers, then \[\frac{{{A_1} + {A_2}}}{{{G_1}{\rm{. }}{G_2}}}\]
A. \[\frac{{a + b}}{{ab}}\]
В. \[\frac{{a + b}}{{2ab}}\]
C. \[\frac{{2ab}}{{a + b}}\]
D. \[\frac{{ab}}{{a + b}}\]
Answer
216.3k+ views
Hint:
To answer this question, we must first understand the Arithmetic and Geometric Means. To solve the problem, we will make an assumption to determine the geometric means \[G1,G2\], and then calculate \[A1,A2\]. To begin solving this problem, we must first determine the geometric and arithmetic means. In order to solve the geometric mean, we will make an assumption in which \[a = {p^3}\]and \[b = {q^3}\]are considered.
Formula used:
The A.M of a,b term of A.P is \[\frac{{(a + b)}}{2}\] )
The G.M of a,b term of G.P is \[\sqrt {ab} \]
The H.M of a, b term of H.P is \[\frac{{2ab}}{{(a + b)}}\]
Complete step-by-step solution:
The question asks us to calculate \[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\] given two arithmetic means and two geometric means between two positive numbers ‘a’ and ‘b’.
Now, we have to solve product of the two means, we obtain
\[ \Rightarrow {G_1}{G_2} = {p^2}q \times p{q^2}\]
Now, by multiplying the above expression we get:
\[ \Rightarrow {G_1}{G_2} = {p^3}{q^3}\]
Here, we have to substitute \[p,q\] from \[a\] and \[b\], we get:
\[ \Rightarrow {G_1}{G_2} = ab\]
The next step is to calculate the value of the arithmetic mean expression.
The sequence is as follows:
\[a,{A_1},{A_2},b\].
Considering that b is the last term and “a” is the first term. In terms of a, the value of b will be
\[b = a + 3d\]
To calculate for\[d\], we have to rearrange the expression:
On doing this we get:
\[ \Rightarrow b = a + 3d\]
\[ \Rightarrow d = \frac{{b - a}}{3}\]
To find the value for \[{A_1},{A_2}\] in terms of \[a\] and \[b\], we have to apply the same formula we get:
\[ \Rightarrow {A_1} = a + d\]
We have to substitute the value of \[d\], we get
\[ \Rightarrow {A_1} = a + \frac{{b - a}}{3}\]
\[ \Rightarrow {A_1} = \frac{{3a + b - a}}{3}\]
\[ \Rightarrow {A_1} = \frac{{2a + b}}{3}\]
In the similar manner we will find the value of \[{A_2}\].
The formula will be:
\[ \Rightarrow {A_2} = a + 2d\]
Here, on substituting the value of\[d\]we get:
\[ \Rightarrow {A_2} = a + 2\left( {\frac{{b - a}}{3}} \right)\]
Make the denominator common for all the terms:
\[ \Rightarrow {A_2} = \frac{{3a + 2b - 2a}}{3}\]
Now, simplify:
\[ \Rightarrow {A_2} = \frac{{a + 2b}}{3}\]
The sum of arithmetic means will have the following value:
\[ \Rightarrow {A_1} + {A_2} = \frac{{2a + b}}{3} + \frac{{a + 2b}}{3}\]
Now, make the denominator common by solving the numerator
\[ \Rightarrow {A_1} + {A_2} = \frac{{3a + 3b}}{3}\]
Simplify the above expression by taking \[{\rm{3}}\]as common in the numerator and cancel in with denominator:
\[ \Rightarrow {A_1} + {A_2} = a + b\]
The value of the expression \[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\] becomes,
\[ \Rightarrow \frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}} = \frac{{a + b}}{{ab}}\]
Therefore, the value of\[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\]is\[\frac{{a + b}}{{ab}}\]
Hence, the option A is correct.
Note:
We must remember that when we discuss the mean for a specific series, the mean is also considered to be a part of the series. For example, if \[{A_1},{A_2},{A_3},{A_4},\] are the arithmetic means between \[a\] and \[b\], then the arithmetic progression is \[a,{A_1},{A_2},{A_3},{A_4},b\]. The geometric mean follows a similar rule.
To answer this question, we must first understand the Arithmetic and Geometric Means. To solve the problem, we will make an assumption to determine the geometric means \[G1,G2\], and then calculate \[A1,A2\]. To begin solving this problem, we must first determine the geometric and arithmetic means. In order to solve the geometric mean, we will make an assumption in which \[a = {p^3}\]and \[b = {q^3}\]are considered.
Formula used:
The A.M of a,b term of A.P is \[\frac{{(a + b)}}{2}\] )
The G.M of a,b term of G.P is \[\sqrt {ab} \]
The H.M of a, b term of H.P is \[\frac{{2ab}}{{(a + b)}}\]
Complete step-by-step solution:
The question asks us to calculate \[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\] given two arithmetic means and two geometric means between two positive numbers ‘a’ and ‘b’.
Now, we have to solve product of the two means, we obtain
\[ \Rightarrow {G_1}{G_2} = {p^2}q \times p{q^2}\]
Now, by multiplying the above expression we get:
\[ \Rightarrow {G_1}{G_2} = {p^3}{q^3}\]
Here, we have to substitute \[p,q\] from \[a\] and \[b\], we get:
\[ \Rightarrow {G_1}{G_2} = ab\]
The next step is to calculate the value of the arithmetic mean expression.
The sequence is as follows:
\[a,{A_1},{A_2},b\].
Considering that b is the last term and “a” is the first term. In terms of a, the value of b will be
\[b = a + 3d\]
To calculate for\[d\], we have to rearrange the expression:
On doing this we get:
\[ \Rightarrow b = a + 3d\]
\[ \Rightarrow d = \frac{{b - a}}{3}\]
To find the value for \[{A_1},{A_2}\] in terms of \[a\] and \[b\], we have to apply the same formula we get:
\[ \Rightarrow {A_1} = a + d\]
We have to substitute the value of \[d\], we get
\[ \Rightarrow {A_1} = a + \frac{{b - a}}{3}\]
\[ \Rightarrow {A_1} = \frac{{3a + b - a}}{3}\]
\[ \Rightarrow {A_1} = \frac{{2a + b}}{3}\]
In the similar manner we will find the value of \[{A_2}\].
The formula will be:
\[ \Rightarrow {A_2} = a + 2d\]
Here, on substituting the value of\[d\]we get:
\[ \Rightarrow {A_2} = a + 2\left( {\frac{{b - a}}{3}} \right)\]
Make the denominator common for all the terms:
\[ \Rightarrow {A_2} = \frac{{3a + 2b - 2a}}{3}\]
Now, simplify:
\[ \Rightarrow {A_2} = \frac{{a + 2b}}{3}\]
The sum of arithmetic means will have the following value:
\[ \Rightarrow {A_1} + {A_2} = \frac{{2a + b}}{3} + \frac{{a + 2b}}{3}\]
Now, make the denominator common by solving the numerator
\[ \Rightarrow {A_1} + {A_2} = \frac{{3a + 3b}}{3}\]
Simplify the above expression by taking \[{\rm{3}}\]as common in the numerator and cancel in with denominator:
\[ \Rightarrow {A_1} + {A_2} = a + b\]
The value of the expression \[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\] becomes,
\[ \Rightarrow \frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}} = \frac{{a + b}}{{ab}}\]
Therefore, the value of\[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\]is\[\frac{{a + b}}{{ab}}\]
Hence, the option A is correct.
Note:
We must remember that when we discuss the mean for a specific series, the mean is also considered to be a part of the series. For example, if \[{A_1},{A_2},{A_3},{A_4},\] are the arithmetic means between \[a\] and \[b\], then the arithmetic progression is \[a,{A_1},{A_2},{A_3},{A_4},b\]. The geometric mean follows a similar rule.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

