
If \[{A_1},{A_2}\] are the two A.M.'s between two numbers \[a\] and \[b\] \[{G_1},{G_2}\] be two G.M.'s between same two numbers, then \[\frac{{{A_1} + {A_2}}}{{{G_1}{\rm{. }}{G_2}}}\]
A. \[\frac{{a + b}}{{ab}}\]
В. \[\frac{{a + b}}{{2ab}}\]
C. \[\frac{{2ab}}{{a + b}}\]
D. \[\frac{{ab}}{{a + b}}\]
Answer
163.2k+ views
Hint:
To answer this question, we must first understand the Arithmetic and Geometric Means. To solve the problem, we will make an assumption to determine the geometric means \[G1,G2\], and then calculate \[A1,A2\]. To begin solving this problem, we must first determine the geometric and arithmetic means. In order to solve the geometric mean, we will make an assumption in which \[a = {p^3}\]and \[b = {q^3}\]are considered.
Formula used:
The A.M of a,b term of A.P is \[\frac{{(a + b)}}{2}\] )
The G.M of a,b term of G.P is \[\sqrt {ab} \]
The H.M of a, b term of H.P is \[\frac{{2ab}}{{(a + b)}}\]
Complete step-by-step solution:
The question asks us to calculate \[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\] given two arithmetic means and two geometric means between two positive numbers ‘a’ and ‘b’.
Now, we have to solve product of the two means, we obtain
\[ \Rightarrow {G_1}{G_2} = {p^2}q \times p{q^2}\]
Now, by multiplying the above expression we get:
\[ \Rightarrow {G_1}{G_2} = {p^3}{q^3}\]
Here, we have to substitute \[p,q\] from \[a\] and \[b\], we get:
\[ \Rightarrow {G_1}{G_2} = ab\]
The next step is to calculate the value of the arithmetic mean expression.
The sequence is as follows:
\[a,{A_1},{A_2},b\].
Considering that b is the last term and “a” is the first term. In terms of a, the value of b will be
\[b = a + 3d\]
To calculate for\[d\], we have to rearrange the expression:
On doing this we get:
\[ \Rightarrow b = a + 3d\]
\[ \Rightarrow d = \frac{{b - a}}{3}\]
To find the value for \[{A_1},{A_2}\] in terms of \[a\] and \[b\], we have to apply the same formula we get:
\[ \Rightarrow {A_1} = a + d\]
We have to substitute the value of \[d\], we get
\[ \Rightarrow {A_1} = a + \frac{{b - a}}{3}\]
\[ \Rightarrow {A_1} = \frac{{3a + b - a}}{3}\]
\[ \Rightarrow {A_1} = \frac{{2a + b}}{3}\]
In the similar manner we will find the value of \[{A_2}\].
The formula will be:
\[ \Rightarrow {A_2} = a + 2d\]
Here, on substituting the value of\[d\]we get:
\[ \Rightarrow {A_2} = a + 2\left( {\frac{{b - a}}{3}} \right)\]
Make the denominator common for all the terms:
\[ \Rightarrow {A_2} = \frac{{3a + 2b - 2a}}{3}\]
Now, simplify:
\[ \Rightarrow {A_2} = \frac{{a + 2b}}{3}\]
The sum of arithmetic means will have the following value:
\[ \Rightarrow {A_1} + {A_2} = \frac{{2a + b}}{3} + \frac{{a + 2b}}{3}\]
Now, make the denominator common by solving the numerator
\[ \Rightarrow {A_1} + {A_2} = \frac{{3a + 3b}}{3}\]
Simplify the above expression by taking \[{\rm{3}}\]as common in the numerator and cancel in with denominator:
\[ \Rightarrow {A_1} + {A_2} = a + b\]
The value of the expression \[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\] becomes,
\[ \Rightarrow \frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}} = \frac{{a + b}}{{ab}}\]
Therefore, the value of\[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\]is\[\frac{{a + b}}{{ab}}\]
Hence, the option A is correct.
Note:
We must remember that when we discuss the mean for a specific series, the mean is also considered to be a part of the series. For example, if \[{A_1},{A_2},{A_3},{A_4},\] are the arithmetic means between \[a\] and \[b\], then the arithmetic progression is \[a,{A_1},{A_2},{A_3},{A_4},b\]. The geometric mean follows a similar rule.
To answer this question, we must first understand the Arithmetic and Geometric Means. To solve the problem, we will make an assumption to determine the geometric means \[G1,G2\], and then calculate \[A1,A2\]. To begin solving this problem, we must first determine the geometric and arithmetic means. In order to solve the geometric mean, we will make an assumption in which \[a = {p^3}\]and \[b = {q^3}\]are considered.
Formula used:
The A.M of a,b term of A.P is \[\frac{{(a + b)}}{2}\] )
The G.M of a,b term of G.P is \[\sqrt {ab} \]
The H.M of a, b term of H.P is \[\frac{{2ab}}{{(a + b)}}\]
Complete step-by-step solution:
The question asks us to calculate \[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\] given two arithmetic means and two geometric means between two positive numbers ‘a’ and ‘b’.
Now, we have to solve product of the two means, we obtain
\[ \Rightarrow {G_1}{G_2} = {p^2}q \times p{q^2}\]
Now, by multiplying the above expression we get:
\[ \Rightarrow {G_1}{G_2} = {p^3}{q^3}\]
Here, we have to substitute \[p,q\] from \[a\] and \[b\], we get:
\[ \Rightarrow {G_1}{G_2} = ab\]
The next step is to calculate the value of the arithmetic mean expression.
The sequence is as follows:
\[a,{A_1},{A_2},b\].
Considering that b is the last term and “a” is the first term. In terms of a, the value of b will be
\[b = a + 3d\]
To calculate for\[d\], we have to rearrange the expression:
On doing this we get:
\[ \Rightarrow b = a + 3d\]
\[ \Rightarrow d = \frac{{b - a}}{3}\]
To find the value for \[{A_1},{A_2}\] in terms of \[a\] and \[b\], we have to apply the same formula we get:
\[ \Rightarrow {A_1} = a + d\]
We have to substitute the value of \[d\], we get
\[ \Rightarrow {A_1} = a + \frac{{b - a}}{3}\]
\[ \Rightarrow {A_1} = \frac{{3a + b - a}}{3}\]
\[ \Rightarrow {A_1} = \frac{{2a + b}}{3}\]
In the similar manner we will find the value of \[{A_2}\].
The formula will be:
\[ \Rightarrow {A_2} = a + 2d\]
Here, on substituting the value of\[d\]we get:
\[ \Rightarrow {A_2} = a + 2\left( {\frac{{b - a}}{3}} \right)\]
Make the denominator common for all the terms:
\[ \Rightarrow {A_2} = \frac{{3a + 2b - 2a}}{3}\]
Now, simplify:
\[ \Rightarrow {A_2} = \frac{{a + 2b}}{3}\]
The sum of arithmetic means will have the following value:
\[ \Rightarrow {A_1} + {A_2} = \frac{{2a + b}}{3} + \frac{{a + 2b}}{3}\]
Now, make the denominator common by solving the numerator
\[ \Rightarrow {A_1} + {A_2} = \frac{{3a + 3b}}{3}\]
Simplify the above expression by taking \[{\rm{3}}\]as common in the numerator and cancel in with denominator:
\[ \Rightarrow {A_1} + {A_2} = a + b\]
The value of the expression \[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\] becomes,
\[ \Rightarrow \frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}} = \frac{{a + b}}{{ab}}\]
Therefore, the value of\[\frac{{{A_1} + {A_2}}}{{{G_1}{G_2}}}\]is\[\frac{{a + b}}{{ab}}\]
Hence, the option A is correct.
Note:
We must remember that when we discuss the mean for a specific series, the mean is also considered to be a part of the series. For example, if \[{A_1},{A_2},{A_3},{A_4},\] are the arithmetic means between \[a\] and \[b\], then the arithmetic progression is \[a,{A_1},{A_2},{A_3},{A_4},b\]. The geometric mean follows a similar rule.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
