
If a variable takes the discrete values $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$ where $\alpha > 0$ . Then find the median of these values.
A. $\alpha - \dfrac{5}{4}$
B. $\alpha - \dfrac{1}{2}$
C. $\alpha - 2$
D. $\alpha + \dfrac{5}{4}$
Answer
162.6k+ views
Hint: First, rearrange the given values in the ascending or descending order. Then calculate the total number of values. If the total number of terms is odd, then consider the middle term as the median. If the total number of terms is even, then consider the average of the middle two terms as the median.
Formula Used:
When there are an odd number of values in a data set, then the median is a ${\left( {\dfrac{{n + 1}}{2}} \right)^{th}}$ term of the arranged data.
When there are even number of values in a data set, then the median is $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}term + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}term}}{2}} \right)$, where n is the number of observations.
Complete step by step solution:
The given set of values is $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$, where $\alpha > 0$.
Let’s rearrange the above values of the data set in ascending order.
The ascending order is: $\alpha - \dfrac{7}{2}, \alpha - 3, \alpha - \dfrac{5}{2}, \alpha - 2, \alpha - \dfrac{1}{2}, \alpha + \dfrac{1}{2}, \alpha + 4,\alpha + 5$
The total number of values in the given set is: 8
Since there is an even number of values in a data set.
So, to find the median of the given data set apply the formula $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$.
We get,
$Median = \left( {\dfrac{{{{\left( {\dfrac{8}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{8}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \left( {\dfrac{{{4^{th}} \text{term} + {5^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \dfrac{{\left( {\alpha - 2} \right) + \left( {\alpha - \dfrac{1}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \dfrac{{\left( {2\alpha - \dfrac{5}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \alpha - \dfrac{5}{4}$
Therefore, the median of the given discrete values is $\alpha - \dfrac{5}{4}$.
Option ‘A’ is correct
Note: The median is the middle value of the data when the data is arranged in an ascending or descending order. So, always rearrange the values of the data set in ascending or descending order.
Formula Used:
When there are an odd number of values in a data set, then the median is a ${\left( {\dfrac{{n + 1}}{2}} \right)^{th}}$ term of the arranged data.
When there are even number of values in a data set, then the median is $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}term + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}term}}{2}} \right)$, where n is the number of observations.
Complete step by step solution:
The given set of values is $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$, where $\alpha > 0$.
Let’s rearrange the above values of the data set in ascending order.
The ascending order is: $\alpha - \dfrac{7}{2}, \alpha - 3, \alpha - \dfrac{5}{2}, \alpha - 2, \alpha - \dfrac{1}{2}, \alpha + \dfrac{1}{2}, \alpha + 4,\alpha + 5$
The total number of values in the given set is: 8
Since there is an even number of values in a data set.
So, to find the median of the given data set apply the formula $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$.
We get,
$Median = \left( {\dfrac{{{{\left( {\dfrac{8}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{8}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \left( {\dfrac{{{4^{th}} \text{term} + {5^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \dfrac{{\left( {\alpha - 2} \right) + \left( {\alpha - \dfrac{1}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \dfrac{{\left( {2\alpha - \dfrac{5}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \alpha - \dfrac{5}{4}$
Therefore, the median of the given discrete values is $\alpha - \dfrac{5}{4}$.
Option ‘A’ is correct
Note: The median is the middle value of the data when the data is arranged in an ascending or descending order. So, always rearrange the values of the data set in ascending or descending order.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
