
If a variable takes the discrete values $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$ where $\alpha > 0$ . Then find the median of these values.
A. $\alpha - \dfrac{5}{4}$
B. $\alpha - \dfrac{1}{2}$
C. $\alpha - 2$
D. $\alpha + \dfrac{5}{4}$
Answer
182.1k+ views
Hint: First, rearrange the given values in the ascending or descending order. Then calculate the total number of values. If the total number of terms is odd, then consider the middle term as the median. If the total number of terms is even, then consider the average of the middle two terms as the median.
Formula Used:
When there are an odd number of values in a data set, then the median is a ${\left( {\dfrac{{n + 1}}{2}} \right)^{th}}$ term of the arranged data.
When there are even number of values in a data set, then the median is $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}term + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}term}}{2}} \right)$, where n is the number of observations.
Complete step by step solution:
The given set of values is $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$, where $\alpha > 0$.
Let’s rearrange the above values of the data set in ascending order.
The ascending order is: $\alpha - \dfrac{7}{2}, \alpha - 3, \alpha - \dfrac{5}{2}, \alpha - 2, \alpha - \dfrac{1}{2}, \alpha + \dfrac{1}{2}, \alpha + 4,\alpha + 5$
The total number of values in the given set is: 8
Since there is an even number of values in a data set.
So, to find the median of the given data set apply the formula $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$.
We get,
$Median = \left( {\dfrac{{{{\left( {\dfrac{8}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{8}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \left( {\dfrac{{{4^{th}} \text{term} + {5^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \dfrac{{\left( {\alpha - 2} \right) + \left( {\alpha - \dfrac{1}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \dfrac{{\left( {2\alpha - \dfrac{5}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \alpha - \dfrac{5}{4}$
Therefore, the median of the given discrete values is $\alpha - \dfrac{5}{4}$.
Option ‘A’ is correct
Note: The median is the middle value of the data when the data is arranged in an ascending or descending order. So, always rearrange the values of the data set in ascending or descending order.
Formula Used:
When there are an odd number of values in a data set, then the median is a ${\left( {\dfrac{{n + 1}}{2}} \right)^{th}}$ term of the arranged data.
When there are even number of values in a data set, then the median is $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}term + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}term}}{2}} \right)$, where n is the number of observations.
Complete step by step solution:
The given set of values is $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$, where $\alpha > 0$.
Let’s rearrange the above values of the data set in ascending order.
The ascending order is: $\alpha - \dfrac{7}{2}, \alpha - 3, \alpha - \dfrac{5}{2}, \alpha - 2, \alpha - \dfrac{1}{2}, \alpha + \dfrac{1}{2}, \alpha + 4,\alpha + 5$
The total number of values in the given set is: 8
Since there is an even number of values in a data set.
So, to find the median of the given data set apply the formula $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$.
We get,
$Median = \left( {\dfrac{{{{\left( {\dfrac{8}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{8}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \left( {\dfrac{{{4^{th}} \text{term} + {5^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \dfrac{{\left( {\alpha - 2} \right) + \left( {\alpha - \dfrac{1}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \dfrac{{\left( {2\alpha - \dfrac{5}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \alpha - \dfrac{5}{4}$
Therefore, the median of the given discrete values is $\alpha - \dfrac{5}{4}$.
Option ‘A’ is correct
Note: The median is the middle value of the data when the data is arranged in an ascending or descending order. So, always rearrange the values of the data set in ascending or descending order.
Recently Updated Pages
Ideal and Non-Ideal Solutions: Differences, Examples & Table

Chemistry Question Paper PDF Download (2025, 2024) with Solutions

Degree of Dissociation in Chemistry: Concept, Formula & Examples

Difference Between Electric Current and Potential Difference: JEE Main 2026

Sign up for JEE Main 2026 Live Classes - Vedantu

Combination of Mirrors Formula, Examples & Image Formation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Displacement and Velocity-Time Graphs: Concepts, Differences & Application

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Electron Gain Enthalpy and Electron Affinity for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

How to Convert a Galvanometer into an Ammeter or Voltmeter

Electric Field Due to a Uniformly Charged Ring Explained

Collision: Meaning, Types & Examples in Physics
