
If a variable takes the discrete values $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$ where $\alpha > 0$ . Then find the median of these values.
A. $\alpha - \dfrac{5}{4}$
B. $\alpha - \dfrac{1}{2}$
C. $\alpha - 2$
D. $\alpha + \dfrac{5}{4}$
Answer
232.8k+ views
Hint: First, rearrange the given values in the ascending or descending order. Then calculate the total number of values. If the total number of terms is odd, then consider the middle term as the median. If the total number of terms is even, then consider the average of the middle two terms as the median.
Formula Used:
When there are an odd number of values in a data set, then the median is a ${\left( {\dfrac{{n + 1}}{2}} \right)^{th}}$ term of the arranged data.
When there are even number of values in a data set, then the median is $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}term + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}term}}{2}} \right)$, where n is the number of observations.
Complete step by step solution:
The given set of values is $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$, where $\alpha > 0$.
Let’s rearrange the above values of the data set in ascending order.
The ascending order is: $\alpha - \dfrac{7}{2}, \alpha - 3, \alpha - \dfrac{5}{2}, \alpha - 2, \alpha - \dfrac{1}{2}, \alpha + \dfrac{1}{2}, \alpha + 4,\alpha + 5$
The total number of values in the given set is: 8
Since there is an even number of values in a data set.
So, to find the median of the given data set apply the formula $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$.
We get,
$Median = \left( {\dfrac{{{{\left( {\dfrac{8}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{8}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \left( {\dfrac{{{4^{th}} \text{term} + {5^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \dfrac{{\left( {\alpha - 2} \right) + \left( {\alpha - \dfrac{1}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \dfrac{{\left( {2\alpha - \dfrac{5}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \alpha - \dfrac{5}{4}$
Therefore, the median of the given discrete values is $\alpha - \dfrac{5}{4}$.
Option ‘A’ is correct
Note: The median is the middle value of the data when the data is arranged in an ascending or descending order. So, always rearrange the values of the data set in ascending or descending order.
Formula Used:
When there are an odd number of values in a data set, then the median is a ${\left( {\dfrac{{n + 1}}{2}} \right)^{th}}$ term of the arranged data.
When there are even number of values in a data set, then the median is $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}}term + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}}term}}{2}} \right)$, where n is the number of observations.
Complete step by step solution:
The given set of values is $\alpha + 4, \alpha - \dfrac{7}{2}, \alpha - \dfrac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \dfrac{1}{2}, \alpha - \dfrac{1}{2},\alpha + 5$, where $\alpha > 0$.
Let’s rearrange the above values of the data set in ascending order.
The ascending order is: $\alpha - \dfrac{7}{2}, \alpha - 3, \alpha - \dfrac{5}{2}, \alpha - 2, \alpha - \dfrac{1}{2}, \alpha + \dfrac{1}{2}, \alpha + 4,\alpha + 5$
The total number of values in the given set is: 8
Since there is an even number of values in a data set.
So, to find the median of the given data set apply the formula $\left( {\dfrac{{{{\left( {\dfrac{n}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{n}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$.
We get,
$Median = \left( {\dfrac{{{{\left( {\dfrac{8}{2}} \right)}^{th}} \text{term} + {{\left( {\dfrac{8}{2} + 1} \right)}^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \left( {\dfrac{{{4^{th}} \text{term} + {5^{th}} \text{term}}}{2}} \right)$
$ \Rightarrow \text{Median} = \dfrac{{\left( {\alpha - 2} \right) + \left( {\alpha - \dfrac{1}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \dfrac{{\left( {2\alpha - \dfrac{5}{2}} \right)}}{2}$
$ \Rightarrow \text{Median} = \alpha - \dfrac{5}{4}$
Therefore, the median of the given discrete values is $\alpha - \dfrac{5}{4}$.
Option ‘A’ is correct
Note: The median is the middle value of the data when the data is arranged in an ascending or descending order. So, always rearrange the values of the data set in ascending or descending order.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

