
If \[a = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} ,b = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}},c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \] Then the value of \[{a^3} + {b^3} + {c^3} - 3abc\]is
(A) \[1\]
(B) \[0\]
(C) \[ - 1\]
(D) \[2\]
Answer
232.8k+ views
Hint: In this question, we have to fins the value of \[{a^3} + {b^3} + {c^3} - 3abc\].Firstly, we will expand the summation \[a\] to \[n = 1\] and add the given summations and then expand them by substituting the values. Further, we will find \[a + b\omega + c{\omega ^2}\] and \[a + b{\omega ^2} + c\omega \]. Then we will multiply all these equations to find the value of \[{a^3} + {b^3} + {c^3} - 3abc\]
Formula used:
The formulas here we used to solve this question is,
1. \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\]
2. \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {a + b\omega + c{\omega ^2}} \right)\left( {a + b{\omega ^2} + c\omega } \right)\] where \[\omega \] is complex cube root of unity.
Complete step-by-step solution:
The given terms are \[a = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} ,b = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}},c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \]
Firstly, we will expand the summation \[a\] to \[n = 1\] by substituting \[n = 0\], we get
\[\begin{array}{l}a = \dfrac{{{x^{3 \times 0}}}}{{3 \times 0}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} \\a = 0 + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} \\a = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 3}}}}{{\left( {3n - 3} \right)!}}} \end{array}\]
Now, we will add all the terms as \[a + b + c\], we get
\[a + b + c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 3}}}}{{\left( {3n - 3} \right)!}}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \]
Further, we will expand all the terms by substituting \[n = 1\], we get
\[a + b + c = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\] (1)
As we know that \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\].
So, substitute this in equation (1), we get
\[a + b + c = {e^x}\] ……(2)
Further, we will find \[a + b\omega + c{\omega ^2}\] by comparing \[x\] with \[\omega x\] in equation (1), we get
\[a + b\omega + c{\omega ^2} = 1 + \dfrac{{\omega x}}{{1!}} + \dfrac{{{\omega ^2}{x^2}}}{{2!}} + \dfrac{{{\omega ^3}{x^3}}}{{3!}} + ....\]
Now, we will again use this formula \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\], we get
\[a + b\omega + c{\omega ^2} = {e^{\omega x}}\] (3)
Further, we will find \[a + b{\omega ^2} + c\omega \] by comparing \[x\] with \[{\omega ^2}x\] in equation (1), we get
\[a + b{\omega ^2} + c\omega = 1 + \dfrac{{{\omega ^2}x}}{{1!}} + \dfrac{{{\omega ^3}{x^2}}}{{2!}} + \dfrac{{{\omega ^4}{x^3}}}{{3!}} + ....\]
Furthermore, we will again use this formula \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\], we get
\[a + b{\omega ^2} + c\omega = {e^{{\omega ^2}x}}\] (4)
Now, we will find the value of \[{a^3} + {b^3} + {c^3} - 3abc\] by applying the formula \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {a + b\omega + c{\omega ^2}} \right)\left( {a + b{\omega ^2} + c\omega } \right)\] and substitute the value from equation (1), (2) and (3), we get
\[{a^3} + {b^3} + {c^3} - 3abc = {e^x} \times {e^{\omega x}} \times {e^{{\omega ^2}x}}\]
Further, we will taking out \[{e^x}\] as common, we get
\[{a^3} + {b^3} + {c^3} - 3abc = {e^{x\left( {1 + \omega + {\omega ^2}} \right)}}\]
As we know that \[\left( {1 + \omega + {\omega ^2}} \right) = 0\].
So, substitute this in above, we get
\[\begin{array}{l}{a^3} + {b^3} + {c^3} - 3abc = {e^{x\left( 0 \right)}}\\{a^3} + {b^3} + {c^3} - 3abc = {e^0}\\{a^3} + {b^3} + {c^3} - 3abc = 1\end{array}\]
Hence Option A) is the correct answer.
Note : In this type of questions, we should now how to solve summation by substituting terms and also know the expansion of terms and algebraic identities. We should also remember the equations and values of complex cube root of unity.
Formula used:
The formulas here we used to solve this question is,
1. \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\]
2. \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {a + b\omega + c{\omega ^2}} \right)\left( {a + b{\omega ^2} + c\omega } \right)\] where \[\omega \] is complex cube root of unity.
Complete step-by-step solution:
The given terms are \[a = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} ,b = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}},c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \]
Firstly, we will expand the summation \[a\] to \[n = 1\] by substituting \[n = 0\], we get
\[\begin{array}{l}a = \dfrac{{{x^{3 \times 0}}}}{{3 \times 0}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} \\a = 0 + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} \\a = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 3}}}}{{\left( {3n - 3} \right)!}}} \end{array}\]
Now, we will add all the terms as \[a + b + c\], we get
\[a + b + c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 3}}}}{{\left( {3n - 3} \right)!}}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \]
Further, we will expand all the terms by substituting \[n = 1\], we get
\[a + b + c = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\] (1)
As we know that \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\].
So, substitute this in equation (1), we get
\[a + b + c = {e^x}\] ……(2)
Further, we will find \[a + b\omega + c{\omega ^2}\] by comparing \[x\] with \[\omega x\] in equation (1), we get
\[a + b\omega + c{\omega ^2} = 1 + \dfrac{{\omega x}}{{1!}} + \dfrac{{{\omega ^2}{x^2}}}{{2!}} + \dfrac{{{\omega ^3}{x^3}}}{{3!}} + ....\]
Now, we will again use this formula \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\], we get
\[a + b\omega + c{\omega ^2} = {e^{\omega x}}\] (3)
Further, we will find \[a + b{\omega ^2} + c\omega \] by comparing \[x\] with \[{\omega ^2}x\] in equation (1), we get
\[a + b{\omega ^2} + c\omega = 1 + \dfrac{{{\omega ^2}x}}{{1!}} + \dfrac{{{\omega ^3}{x^2}}}{{2!}} + \dfrac{{{\omega ^4}{x^3}}}{{3!}} + ....\]
Furthermore, we will again use this formula \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\], we get
\[a + b{\omega ^2} + c\omega = {e^{{\omega ^2}x}}\] (4)
Now, we will find the value of \[{a^3} + {b^3} + {c^3} - 3abc\] by applying the formula \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {a + b\omega + c{\omega ^2}} \right)\left( {a + b{\omega ^2} + c\omega } \right)\] and substitute the value from equation (1), (2) and (3), we get
\[{a^3} + {b^3} + {c^3} - 3abc = {e^x} \times {e^{\omega x}} \times {e^{{\omega ^2}x}}\]
Further, we will taking out \[{e^x}\] as common, we get
\[{a^3} + {b^3} + {c^3} - 3abc = {e^{x\left( {1 + \omega + {\omega ^2}} \right)}}\]
As we know that \[\left( {1 + \omega + {\omega ^2}} \right) = 0\].
So, substitute this in above, we get
\[\begin{array}{l}{a^3} + {b^3} + {c^3} - 3abc = {e^{x\left( 0 \right)}}\\{a^3} + {b^3} + {c^3} - 3abc = {e^0}\\{a^3} + {b^3} + {c^3} - 3abc = 1\end{array}\]
Hence Option A) is the correct answer.
Note : In this type of questions, we should now how to solve summation by substituting terms and also know the expansion of terms and algebraic identities. We should also remember the equations and values of complex cube root of unity.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

