
If \[a = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} ,b = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}},c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \] Then the value of \[{a^3} + {b^3} + {c^3} - 3abc\]is
(A) \[1\]
(B) \[0\]
(C) \[ - 1\]
(D) \[2\]
Answer
163.2k+ views
Hint: In this question, we have to fins the value of \[{a^3} + {b^3} + {c^3} - 3abc\].Firstly, we will expand the summation \[a\] to \[n = 1\] and add the given summations and then expand them by substituting the values. Further, we will find \[a + b\omega + c{\omega ^2}\] and \[a + b{\omega ^2} + c\omega \]. Then we will multiply all these equations to find the value of \[{a^3} + {b^3} + {c^3} - 3abc\]
Formula used:
The formulas here we used to solve this question is,
1. \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\]
2. \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {a + b\omega + c{\omega ^2}} \right)\left( {a + b{\omega ^2} + c\omega } \right)\] where \[\omega \] is complex cube root of unity.
Complete step-by-step solution:
The given terms are \[a = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} ,b = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}},c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \]
Firstly, we will expand the summation \[a\] to \[n = 1\] by substituting \[n = 0\], we get
\[\begin{array}{l}a = \dfrac{{{x^{3 \times 0}}}}{{3 \times 0}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} \\a = 0 + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} \\a = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 3}}}}{{\left( {3n - 3} \right)!}}} \end{array}\]
Now, we will add all the terms as \[a + b + c\], we get
\[a + b + c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 3}}}}{{\left( {3n - 3} \right)!}}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \]
Further, we will expand all the terms by substituting \[n = 1\], we get
\[a + b + c = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\] (1)
As we know that \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\].
So, substitute this in equation (1), we get
\[a + b + c = {e^x}\] ……(2)
Further, we will find \[a + b\omega + c{\omega ^2}\] by comparing \[x\] with \[\omega x\] in equation (1), we get
\[a + b\omega + c{\omega ^2} = 1 + \dfrac{{\omega x}}{{1!}} + \dfrac{{{\omega ^2}{x^2}}}{{2!}} + \dfrac{{{\omega ^3}{x^3}}}{{3!}} + ....\]
Now, we will again use this formula \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\], we get
\[a + b\omega + c{\omega ^2} = {e^{\omega x}}\] (3)
Further, we will find \[a + b{\omega ^2} + c\omega \] by comparing \[x\] with \[{\omega ^2}x\] in equation (1), we get
\[a + b{\omega ^2} + c\omega = 1 + \dfrac{{{\omega ^2}x}}{{1!}} + \dfrac{{{\omega ^3}{x^2}}}{{2!}} + \dfrac{{{\omega ^4}{x^3}}}{{3!}} + ....\]
Furthermore, we will again use this formula \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\], we get
\[a + b{\omega ^2} + c\omega = {e^{{\omega ^2}x}}\] (4)
Now, we will find the value of \[{a^3} + {b^3} + {c^3} - 3abc\] by applying the formula \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {a + b\omega + c{\omega ^2}} \right)\left( {a + b{\omega ^2} + c\omega } \right)\] and substitute the value from equation (1), (2) and (3), we get
\[{a^3} + {b^3} + {c^3} - 3abc = {e^x} \times {e^{\omega x}} \times {e^{{\omega ^2}x}}\]
Further, we will taking out \[{e^x}\] as common, we get
\[{a^3} + {b^3} + {c^3} - 3abc = {e^{x\left( {1 + \omega + {\omega ^2}} \right)}}\]
As we know that \[\left( {1 + \omega + {\omega ^2}} \right) = 0\].
So, substitute this in above, we get
\[\begin{array}{l}{a^3} + {b^3} + {c^3} - 3abc = {e^{x\left( 0 \right)}}\\{a^3} + {b^3} + {c^3} - 3abc = {e^0}\\{a^3} + {b^3} + {c^3} - 3abc = 1\end{array}\]
Hence Option A) is the correct answer.
Note : In this type of questions, we should now how to solve summation by substituting terms and also know the expansion of terms and algebraic identities. We should also remember the equations and values of complex cube root of unity.
Formula used:
The formulas here we used to solve this question is,
1. \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\]
2. \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {a + b\omega + c{\omega ^2}} \right)\left( {a + b{\omega ^2} + c\omega } \right)\] where \[\omega \] is complex cube root of unity.
Complete step-by-step solution:
The given terms are \[a = \sum\limits_{n = 0}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} ,b = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}},c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \]
Firstly, we will expand the summation \[a\] to \[n = 1\] by substituting \[n = 0\], we get
\[\begin{array}{l}a = \dfrac{{{x^{3 \times 0}}}}{{3 \times 0}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} \\a = 0 + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n}}}}{{3n!}}} \\a = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 3}}}}{{\left( {3n - 3} \right)!}}} \end{array}\]
Now, we will add all the terms as \[a + b + c\], we get
\[a + b + c = \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 3}}}}{{\left( {3n - 3} \right)!}}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 2}}}}{{\left( {3n - 2} \right)!}} + \sum\limits_{n = 1}^\infty {\dfrac{{{x^{3n - 1}}}}{{\left( {3n - 1} \right)!}}} } \]
Further, we will expand all the terms by substituting \[n = 1\], we get
\[a + b + c = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\] (1)
As we know that \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\].
So, substitute this in equation (1), we get
\[a + b + c = {e^x}\] ……(2)
Further, we will find \[a + b\omega + c{\omega ^2}\] by comparing \[x\] with \[\omega x\] in equation (1), we get
\[a + b\omega + c{\omega ^2} = 1 + \dfrac{{\omega x}}{{1!}} + \dfrac{{{\omega ^2}{x^2}}}{{2!}} + \dfrac{{{\omega ^3}{x^3}}}{{3!}} + ....\]
Now, we will again use this formula \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\], we get
\[a + b\omega + c{\omega ^2} = {e^{\omega x}}\] (3)
Further, we will find \[a + b{\omega ^2} + c\omega \] by comparing \[x\] with \[{\omega ^2}x\] in equation (1), we get
\[a + b{\omega ^2} + c\omega = 1 + \dfrac{{{\omega ^2}x}}{{1!}} + \dfrac{{{\omega ^3}{x^2}}}{{2!}} + \dfrac{{{\omega ^4}{x^3}}}{{3!}} + ....\]
Furthermore, we will again use this formula \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....\], we get
\[a + b{\omega ^2} + c\omega = {e^{{\omega ^2}x}}\] (4)
Now, we will find the value of \[{a^3} + {b^3} + {c^3} - 3abc\] by applying the formula \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {a + b\omega + c{\omega ^2}} \right)\left( {a + b{\omega ^2} + c\omega } \right)\] and substitute the value from equation (1), (2) and (3), we get
\[{a^3} + {b^3} + {c^3} - 3abc = {e^x} \times {e^{\omega x}} \times {e^{{\omega ^2}x}}\]
Further, we will taking out \[{e^x}\] as common, we get
\[{a^3} + {b^3} + {c^3} - 3abc = {e^{x\left( {1 + \omega + {\omega ^2}} \right)}}\]
As we know that \[\left( {1 + \omega + {\omega ^2}} \right) = 0\].
So, substitute this in above, we get
\[\begin{array}{l}{a^3} + {b^3} + {c^3} - 3abc = {e^{x\left( 0 \right)}}\\{a^3} + {b^3} + {c^3} - 3abc = {e^0}\\{a^3} + {b^3} + {c^3} - 3abc = 1\end{array}\]
Hence Option A) is the correct answer.
Note : In this type of questions, we should now how to solve summation by substituting terms and also know the expansion of terms and algebraic identities. We should also remember the equations and values of complex cube root of unity.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
