
If A = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ and B = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ then the correct relation is
A . ${{A}^{2}}={{B}^{2}}$
B . $A+B=B-A$
C . $AB=BA$
D . None of these
Answer
232.8k+ views
Hint: In this question, we have given two matrices and we have to find out that which option follows. We will solve this question with the help of options. As in the first option, we find the square of A and B then we check whether it will be equal or not. Similarly for second option, we add and subtract the both matrices and check whether it is equal or not and for third option, we multiply both the matrices. By solving all the options, we are able to find out the correct option.
Complete Step- by- step Solution:
Given A = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
And B = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
First we check the Option (A)
For this we find the ${{A}^{2}}$ and ${{B}^{2}}$
${{A}^{2}}$= $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha & -\cos \alpha \sin \alpha -\sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha +\cos \alpha \sin \alpha & -{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha & -2\cos \alpha \sin \alpha \\
2\sin \alpha \cos \alpha & -{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{matrix} \right]$
Similarly we find ${{B}^{2}}$
${{B}^{2}}$= $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
${{B}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\beta -{{\sin }^{2}}\beta & -\cos \beta \sin \beta -\cos \beta \sin \beta \\
\sin \beta \cos \beta +\cos \beta \sin \beta & -{{\sin }^{2}}\beta +{{\cos }^{2}}\beta \\
\end{matrix} \right]$
${{B}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\beta -{{\sin }^{2}}\beta & -2\cos \beta \sin \beta \\
2\sin \beta \cos \beta & -{{\sin }^{2}}\beta +{{\cos }^{2}}\beta \\
\end{matrix} \right]$
Thus ${{A}^{2}}\ne {{B}^{2}}$
Now we check Option (B)
We add A and B, we get
A + B = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ + $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
A + B = $\left[ \begin{matrix}
\cos \alpha +\cos \beta & -\sin \alpha -\sin \beta \\
\sin \alpha +\sin \beta & \cos \alpha +\cos \beta \\
\end{matrix} \right]$
And B – A = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ - $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
B – A = $\left[ \begin{matrix}
\cos \beta -\cos \alpha & -\sin \beta +\sin \alpha \\
\sin \beta -\sin \alpha & \cos \beta -\cos \alpha \\
\end{matrix} \right]$
Thus $A+B\ne B-A$
Now we check Option ( C )
First we multiply A with B
AB = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$$\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
\cos \alpha \cos \beta -\sin \alpha \sin \beta & -\cos \alpha \sin \beta -\sin \alpha \cos \beta\\
sin \alpha \cos \beta +\cos \alpha \sin \beta \ & -\sin \alpha \sin \beta +\cos \alpha \cos \beta \\
\end{matrix} \right]$
Similarly BA = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
BA = $\left[ \begin{matrix}
\cos \beta \cos \alpha -\sin \beta \sin \alpha & -\cos \beta \sin \alpha -\sin \beta \cos \alpha \\
\sin \beta \cos \alpha +\cos \beta \sin \alpha & -\sin \beta \sin \alpha +\cos \beta \cos \alpha \\
\end{matrix} \right]$
Hence $AB=BA$
Thus Option ( C ) is correct.
Note: Students make mistakes in multiplying the matrices. Remember that when we want to do squaring of A, we multiply the matrix A with A and when AB is given then we multiply A with B. If AB is given then first we put matrix A then B and when BA is given then we first put matrix B then A.
Complete Step- by- step Solution:
Given A = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
And B = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
First we check the Option (A)
For this we find the ${{A}^{2}}$ and ${{B}^{2}}$
${{A}^{2}}$= $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha & -\cos \alpha \sin \alpha -\sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha +\cos \alpha \sin \alpha & -{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha & -2\cos \alpha \sin \alpha \\
2\sin \alpha \cos \alpha & -{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{matrix} \right]$
Similarly we find ${{B}^{2}}$
${{B}^{2}}$= $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
${{B}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\beta -{{\sin }^{2}}\beta & -\cos \beta \sin \beta -\cos \beta \sin \beta \\
\sin \beta \cos \beta +\cos \beta \sin \beta & -{{\sin }^{2}}\beta +{{\cos }^{2}}\beta \\
\end{matrix} \right]$
${{B}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\beta -{{\sin }^{2}}\beta & -2\cos \beta \sin \beta \\
2\sin \beta \cos \beta & -{{\sin }^{2}}\beta +{{\cos }^{2}}\beta \\
\end{matrix} \right]$
Thus ${{A}^{2}}\ne {{B}^{2}}$
Now we check Option (B)
We add A and B, we get
A + B = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ + $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
A + B = $\left[ \begin{matrix}
\cos \alpha +\cos \beta & -\sin \alpha -\sin \beta \\
\sin \alpha +\sin \beta & \cos \alpha +\cos \beta \\
\end{matrix} \right]$
And B – A = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ - $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
B – A = $\left[ \begin{matrix}
\cos \beta -\cos \alpha & -\sin \beta +\sin \alpha \\
\sin \beta -\sin \alpha & \cos \beta -\cos \alpha \\
\end{matrix} \right]$
Thus $A+B\ne B-A$
Now we check Option ( C )
First we multiply A with B
AB = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$$\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
\cos \alpha \cos \beta -\sin \alpha \sin \beta & -\cos \alpha \sin \beta -\sin \alpha \cos \beta\\
sin \alpha \cos \beta +\cos \alpha \sin \beta \ & -\sin \alpha \sin \beta +\cos \alpha \cos \beta \\
\end{matrix} \right]$
Similarly BA = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
BA = $\left[ \begin{matrix}
\cos \beta \cos \alpha -\sin \beta \sin \alpha & -\cos \beta \sin \alpha -\sin \beta \cos \alpha \\
\sin \beta \cos \alpha +\cos \beta \sin \alpha & -\sin \beta \sin \alpha +\cos \beta \cos \alpha \\
\end{matrix} \right]$
Hence $AB=BA$
Thus Option ( C ) is correct.
Note: Students make mistakes in multiplying the matrices. Remember that when we want to do squaring of A, we multiply the matrix A with A and when AB is given then we multiply A with B. If AB is given then first we put matrix A then B and when BA is given then we first put matrix B then A.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

