
If A = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ and B = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ then the correct relation is
A . ${{A}^{2}}={{B}^{2}}$
B . $A+B=B-A$
C . $AB=BA$
D . None of these
Answer
161.7k+ views
Hint: In this question, we have given two matrices and we have to find out that which option follows. We will solve this question with the help of options. As in the first option, we find the square of A and B then we check whether it will be equal or not. Similarly for second option, we add and subtract the both matrices and check whether it is equal or not and for third option, we multiply both the matrices. By solving all the options, we are able to find out the correct option.
Complete Step- by- step Solution:
Given A = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
And B = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
First we check the Option (A)
For this we find the ${{A}^{2}}$ and ${{B}^{2}}$
${{A}^{2}}$= $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha & -\cos \alpha \sin \alpha -\sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha +\cos \alpha \sin \alpha & -{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha & -2\cos \alpha \sin \alpha \\
2\sin \alpha \cos \alpha & -{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{matrix} \right]$
Similarly we find ${{B}^{2}}$
${{B}^{2}}$= $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
${{B}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\beta -{{\sin }^{2}}\beta & -\cos \beta \sin \beta -\cos \beta \sin \beta \\
\sin \beta \cos \beta +\cos \beta \sin \beta & -{{\sin }^{2}}\beta +{{\cos }^{2}}\beta \\
\end{matrix} \right]$
${{B}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\beta -{{\sin }^{2}}\beta & -2\cos \beta \sin \beta \\
2\sin \beta \cos \beta & -{{\sin }^{2}}\beta +{{\cos }^{2}}\beta \\
\end{matrix} \right]$
Thus ${{A}^{2}}\ne {{B}^{2}}$
Now we check Option (B)
We add A and B, we get
A + B = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ + $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
A + B = $\left[ \begin{matrix}
\cos \alpha +\cos \beta & -\sin \alpha -\sin \beta \\
\sin \alpha +\sin \beta & \cos \alpha +\cos \beta \\
\end{matrix} \right]$
And B – A = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ - $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
B – A = $\left[ \begin{matrix}
\cos \beta -\cos \alpha & -\sin \beta +\sin \alpha \\
\sin \beta -\sin \alpha & \cos \beta -\cos \alpha \\
\end{matrix} \right]$
Thus $A+B\ne B-A$
Now we check Option ( C )
First we multiply A with B
AB = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$$\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
\cos \alpha \cos \beta -\sin \alpha \sin \beta & -\cos \alpha \sin \beta -\sin \alpha \cos \beta\\
sin \alpha \cos \beta +\cos \alpha \sin \beta \ & -\sin \alpha \sin \beta +\cos \alpha \cos \beta \\
\end{matrix} \right]$
Similarly BA = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
BA = $\left[ \begin{matrix}
\cos \beta \cos \alpha -\sin \beta \sin \alpha & -\cos \beta \sin \alpha -\sin \beta \cos \alpha \\
\sin \beta \cos \alpha +\cos \beta \sin \alpha & -\sin \beta \sin \alpha +\cos \beta \cos \alpha \\
\end{matrix} \right]$
Hence $AB=BA$
Thus Option ( C ) is correct.
Note: Students make mistakes in multiplying the matrices. Remember that when we want to do squaring of A, we multiply the matrix A with A and when AB is given then we multiply A with B. If AB is given then first we put matrix A then B and when BA is given then we first put matrix B then A.
Complete Step- by- step Solution:
Given A = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
And B = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
First we check the Option (A)
For this we find the ${{A}^{2}}$ and ${{B}^{2}}$
${{A}^{2}}$= $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha & -\cos \alpha \sin \alpha -\sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha +\cos \alpha \sin \alpha & -{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha & -2\cos \alpha \sin \alpha \\
2\sin \alpha \cos \alpha & -{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \\
\end{matrix} \right]$
Similarly we find ${{B}^{2}}$
${{B}^{2}}$= $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
${{B}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\beta -{{\sin }^{2}}\beta & -\cos \beta \sin \beta -\cos \beta \sin \beta \\
\sin \beta \cos \beta +\cos \beta \sin \beta & -{{\sin }^{2}}\beta +{{\cos }^{2}}\beta \\
\end{matrix} \right]$
${{B}^{2}}$= $\left[ \begin{matrix}
{{\cos }^{2}}\beta -{{\sin }^{2}}\beta & -2\cos \beta \sin \beta \\
2\sin \beta \cos \beta & -{{\sin }^{2}}\beta +{{\cos }^{2}}\beta \\
\end{matrix} \right]$
Thus ${{A}^{2}}\ne {{B}^{2}}$
Now we check Option (B)
We add A and B, we get
A + B = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$ + $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
A + B = $\left[ \begin{matrix}
\cos \alpha +\cos \beta & -\sin \alpha -\sin \beta \\
\sin \alpha +\sin \beta & \cos \alpha +\cos \beta \\
\end{matrix} \right]$
And B – A = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ - $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
B – A = $\left[ \begin{matrix}
\cos \beta -\cos \alpha & -\sin \beta +\sin \alpha \\
\sin \beta -\sin \alpha & \cos \beta -\cos \alpha \\
\end{matrix} \right]$
Thus $A+B\ne B-A$
Now we check Option ( C )
First we multiply A with B
AB = $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$$\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
\cos \alpha \cos \beta -\sin \alpha \sin \beta & -\cos \alpha \sin \beta -\sin \alpha \cos \beta\\
sin \alpha \cos \beta +\cos \alpha \sin \beta \ & -\sin \alpha \sin \beta +\cos \alpha \cos \beta \\
\end{matrix} \right]$
Similarly BA = $\left[ \begin{matrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta \\
\end{matrix} \right]$ $\left[ \begin{matrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha \\
\end{matrix} \right]$
BA = $\left[ \begin{matrix}
\cos \beta \cos \alpha -\sin \beta \sin \alpha & -\cos \beta \sin \alpha -\sin \beta \cos \alpha \\
\sin \beta \cos \alpha +\cos \beta \sin \alpha & -\sin \beta \sin \alpha +\cos \beta \cos \alpha \\
\end{matrix} \right]$
Hence $AB=BA$
Thus Option ( C ) is correct.
Note: Students make mistakes in multiplying the matrices. Remember that when we want to do squaring of A, we multiply the matrix A with A and when AB is given then we multiply A with B. If AB is given then first we put matrix A then B and when BA is given then we first put matrix B then A.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
