
If A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ , C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ then the expression which is not defined is
A . ${{A}^{2}}+2B-2A$
B . $CC'$
C . $B'C$
D . $AB$
Answer
217.8k+ views
Hint: in this question, we have to find the option which is not defined. For this , we solve all the given options and find out the option which is not defined and choose the correct option.
Complete Step- by- Step Solution:
We have given the matrices A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ and C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Which are of different order.
To find out the correct option, we will check all the options
First option is ${{A}^{2}}+2B-2A$
${{A}^{2}}$= $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
Multiply both the matrix, we get
${{A}^{2}}$= $\left[ \begin{matrix}
16+18-1 & 24+0+2 & -4+12-5 \\
12+0+2 & 18+0-4 & -3+0+10 \\
4-6+5 & 6+0-10 & -1-4+25 \\
\end{matrix} \right]$
Simplify further, we get
${{A}^{2}}$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$
Now we find ${{A}^{2}}+2B-2A$
${{A}^{2}}+2B-2A$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$+ 2 $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ - 2 $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
We cannot add the above matrices as they are not of same order.
So ${{A}^{2}}+2B-2A$ is not defined.
Now we solve Option [ B ]
We have to find CC’
C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ and then C’ = $\left[ \begin{matrix}
3 & 1 & 2 \\
\end{matrix} \right]$
Multiply both matrix, we get
C'C = $\left[9+1+4\right]=\left[14\right]$
Now we solve Option [ C ]
Given B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ then B’ = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$
And C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Then B’C = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$$\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
B’C = $\left[ \begin{align}
& 4 \\
& 17 \\
\end{align} \right]$
Now we solve Option [ D ]
AB = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$$\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
9 \\
4 \\
-3 \\
\end{matrix}\,\,\,\,\begin{matrix}
20 \\
16 \\
12 \\
\end{matrix} \right]$
Hence we see that all the options are defined except Option [ A ]
Thus, Option ( A) is correct.
Note: In these types of questions, Students made mistakes in multiplying the matrices. Matrices are the set of numbers which are arranged in rows and columns to make a rectangular array. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. In multiplication of matrices, if we take $A[4\times 3]$and $B[3\times 4]$multiplication of both the matrix is possible but If we take $A[4\times 3]$and $B[4\times 3]$multiplication of matrix is not possible.
Complete Step- by- Step Solution:
We have given the matrices A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ and C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Which are of different order.
To find out the correct option, we will check all the options
First option is ${{A}^{2}}+2B-2A$
${{A}^{2}}$= $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
Multiply both the matrix, we get
${{A}^{2}}$= $\left[ \begin{matrix}
16+18-1 & 24+0+2 & -4+12-5 \\
12+0+2 & 18+0-4 & -3+0+10 \\
4-6+5 & 6+0-10 & -1-4+25 \\
\end{matrix} \right]$
Simplify further, we get
${{A}^{2}}$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$
Now we find ${{A}^{2}}+2B-2A$
${{A}^{2}}+2B-2A$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$+ 2 $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ - 2 $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
We cannot add the above matrices as they are not of same order.
So ${{A}^{2}}+2B-2A$ is not defined.
Now we solve Option [ B ]
We have to find CC’
C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ and then C’ = $\left[ \begin{matrix}
3 & 1 & 2 \\
\end{matrix} \right]$
Multiply both matrix, we get
C'C = $\left[9+1+4\right]=\left[14\right]$
Now we solve Option [ C ]
Given B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ then B’ = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$
And C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Then B’C = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$$\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
B’C = $\left[ \begin{align}
& 4 \\
& 17 \\
\end{align} \right]$
Now we solve Option [ D ]
AB = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$$\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
9 \\
4 \\
-3 \\
\end{matrix}\,\,\,\,\begin{matrix}
20 \\
16 \\
12 \\
\end{matrix} \right]$
Hence we see that all the options are defined except Option [ A ]
Thus, Option ( A) is correct.
Note: In these types of questions, Students made mistakes in multiplying the matrices. Matrices are the set of numbers which are arranged in rows and columns to make a rectangular array. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. In multiplication of matrices, if we take $A[4\times 3]$and $B[3\times 4]$multiplication of both the matrix is possible but If we take $A[4\times 3]$and $B[4\times 3]$multiplication of matrix is not possible.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

