
If A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ , C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ then the expression which is not defined is
A . ${{A}^{2}}+2B-2A$
B . $CC'$
C . $B'C$
D . $AB$
Answer
161.1k+ views
Hint: in this question, we have to find the option which is not defined. For this , we solve all the given options and find out the option which is not defined and choose the correct option.
Complete Step- by- Step Solution:
We have given the matrices A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ and C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Which are of different order.
To find out the correct option, we will check all the options
First option is ${{A}^{2}}+2B-2A$
${{A}^{2}}$= $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
Multiply both the matrix, we get
${{A}^{2}}$= $\left[ \begin{matrix}
16+18-1 & 24+0+2 & -4+12-5 \\
12+0+2 & 18+0-4 & -3+0+10 \\
4-6+5 & 6+0-10 & -1-4+25 \\
\end{matrix} \right]$
Simplify further, we get
${{A}^{2}}$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$
Now we find ${{A}^{2}}+2B-2A$
${{A}^{2}}+2B-2A$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$+ 2 $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ - 2 $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
We cannot add the above matrices as they are not of same order.
So ${{A}^{2}}+2B-2A$ is not defined.
Now we solve Option [ B ]
We have to find CC’
C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ and then C’ = $\left[ \begin{matrix}
3 & 1 & 2 \\
\end{matrix} \right]$
Multiply both matrix, we get
C'C = $\left[9+1+4\right]=\left[14\right]$
Now we solve Option [ C ]
Given B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ then B’ = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$
And C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Then B’C = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$$\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
B’C = $\left[ \begin{align}
& 4 \\
& 17 \\
\end{align} \right]$
Now we solve Option [ D ]
AB = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$$\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
9 \\
4 \\
-3 \\
\end{matrix}\,\,\,\,\begin{matrix}
20 \\
16 \\
12 \\
\end{matrix} \right]$
Hence we see that all the options are defined except Option [ A ]
Thus, Option ( A) is correct.
Note: In these types of questions, Students made mistakes in multiplying the matrices. Matrices are the set of numbers which are arranged in rows and columns to make a rectangular array. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. In multiplication of matrices, if we take $A[4\times 3]$and $B[3\times 4]$multiplication of both the matrix is possible but If we take $A[4\times 3]$and $B[4\times 3]$multiplication of matrix is not possible.
Complete Step- by- Step Solution:
We have given the matrices A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ and C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Which are of different order.
To find out the correct option, we will check all the options
First option is ${{A}^{2}}+2B-2A$
${{A}^{2}}$= $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
Multiply both the matrix, we get
${{A}^{2}}$= $\left[ \begin{matrix}
16+18-1 & 24+0+2 & -4+12-5 \\
12+0+2 & 18+0-4 & -3+0+10 \\
4-6+5 & 6+0-10 & -1-4+25 \\
\end{matrix} \right]$
Simplify further, we get
${{A}^{2}}$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$
Now we find ${{A}^{2}}+2B-2A$
${{A}^{2}}+2B-2A$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$+ 2 $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ - 2 $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
We cannot add the above matrices as they are not of same order.
So ${{A}^{2}}+2B-2A$ is not defined.
Now we solve Option [ B ]
We have to find CC’
C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ and then C’ = $\left[ \begin{matrix}
3 & 1 & 2 \\
\end{matrix} \right]$
Multiply both matrix, we get
C'C = $\left[9+1+4\right]=\left[14\right]$
Now we solve Option [ C ]
Given B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ then B’ = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$
And C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Then B’C = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$$\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
B’C = $\left[ \begin{align}
& 4 \\
& 17 \\
\end{align} \right]$
Now we solve Option [ D ]
AB = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$$\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
9 \\
4 \\
-3 \\
\end{matrix}\,\,\,\,\begin{matrix}
20 \\
16 \\
12 \\
\end{matrix} \right]$
Hence we see that all the options are defined except Option [ A ]
Thus, Option ( A) is correct.
Note: In these types of questions, Students made mistakes in multiplying the matrices. Matrices are the set of numbers which are arranged in rows and columns to make a rectangular array. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. In multiplication of matrices, if we take $A[4\times 3]$and $B[3\times 4]$multiplication of both the matrix is possible but If we take $A[4\times 3]$and $B[4\times 3]$multiplication of matrix is not possible.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
