
If A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ , C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ then the expression which is not defined is
A . ${{A}^{2}}+2B-2A$
B . $CC'$
C . $B'C$
D . $AB$
Answer
233.1k+ views
Hint: in this question, we have to find the option which is not defined. For this , we solve all the given options and find out the option which is not defined and choose the correct option.
Complete Step- by- Step Solution:
We have given the matrices A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ and C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Which are of different order.
To find out the correct option, we will check all the options
First option is ${{A}^{2}}+2B-2A$
${{A}^{2}}$= $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
Multiply both the matrix, we get
${{A}^{2}}$= $\left[ \begin{matrix}
16+18-1 & 24+0+2 & -4+12-5 \\
12+0+2 & 18+0-4 & -3+0+10 \\
4-6+5 & 6+0-10 & -1-4+25 \\
\end{matrix} \right]$
Simplify further, we get
${{A}^{2}}$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$
Now we find ${{A}^{2}}+2B-2A$
${{A}^{2}}+2B-2A$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$+ 2 $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ - 2 $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
We cannot add the above matrices as they are not of same order.
So ${{A}^{2}}+2B-2A$ is not defined.
Now we solve Option [ B ]
We have to find CC’
C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ and then C’ = $\left[ \begin{matrix}
3 & 1 & 2 \\
\end{matrix} \right]$
Multiply both matrix, we get
C'C = $\left[9+1+4\right]=\left[14\right]$
Now we solve Option [ C ]
Given B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ then B’ = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$
And C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Then B’C = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$$\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
B’C = $\left[ \begin{align}
& 4 \\
& 17 \\
\end{align} \right]$
Now we solve Option [ D ]
AB = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$$\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
9 \\
4 \\
-3 \\
\end{matrix}\,\,\,\,\begin{matrix}
20 \\
16 \\
12 \\
\end{matrix} \right]$
Hence we see that all the options are defined except Option [ A ]
Thus, Option ( A) is correct.
Note: In these types of questions, Students made mistakes in multiplying the matrices. Matrices are the set of numbers which are arranged in rows and columns to make a rectangular array. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. In multiplication of matrices, if we take $A[4\times 3]$and $B[3\times 4]$multiplication of both the matrix is possible but If we take $A[4\times 3]$and $B[4\times 3]$multiplication of matrix is not possible.
Complete Step- by- Step Solution:
We have given the matrices A = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ , B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ and C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Which are of different order.
To find out the correct option, we will check all the options
First option is ${{A}^{2}}+2B-2A$
${{A}^{2}}$= $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
Multiply both the matrix, we get
${{A}^{2}}$= $\left[ \begin{matrix}
16+18-1 & 24+0+2 & -4+12-5 \\
12+0+2 & 18+0-4 & -3+0+10 \\
4-6+5 & 6+0-10 & -1-4+25 \\
\end{matrix} \right]$
Simplify further, we get
${{A}^{2}}$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$
Now we find ${{A}^{2}}+2B-2A$
${{A}^{2}}+2B-2A$= $\left[ \begin{matrix}
33 & 26 & 3 \\
14 & 14 & 7 \\
3 & -4 & 20 \\
\end{matrix} \right]$+ 2 $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ - 2 $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$
We cannot add the above matrices as they are not of same order.
So ${{A}^{2}}+2B-2A$ is not defined.
Now we solve Option [ B ]
We have to find CC’
C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$ and then C’ = $\left[ \begin{matrix}
3 & 1 & 2 \\
\end{matrix} \right]$
Multiply both matrix, we get
C'C = $\left[9+1+4\right]=\left[14\right]$
Now we solve Option [ C ]
Given B = $\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$ then B’ = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$
And C = $\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
Then B’C = $\left[ \begin{align}
& \begin{matrix}
2 & 0 & -1 \\
\end{matrix} \\
& \begin{matrix}
4 & 1 & 2 \\
\end{matrix} \\
\end{align} \right]$$\left[ \begin{matrix}
3 \\
1 \\
2 \\
\end{matrix}\, \right]$
B’C = $\left[ \begin{align}
& 4 \\
& 17 \\
\end{align} \right]$
Now we solve Option [ D ]
AB = $\left[ \begin{matrix}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5 \\
\end{matrix} \right]$$\left[ \begin{matrix}
2 \\
0 \\
-1 \\
\end{matrix}\,\,\,\,\begin{matrix}
4 \\
1 \\
2 \\
\end{matrix} \right]$
AB = $\left[ \begin{matrix}
9 \\
4 \\
-3 \\
\end{matrix}\,\,\,\,\begin{matrix}
20 \\
16 \\
12 \\
\end{matrix} \right]$
Hence we see that all the options are defined except Option [ A ]
Thus, Option ( A) is correct.
Note: In these types of questions, Students made mistakes in multiplying the matrices. Matrices are the set of numbers which are arranged in rows and columns to make a rectangular array. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. In multiplication of matrices, if we take $A[4\times 3]$and $B[3\times 4]$multiplication of both the matrix is possible but If we take $A[4\times 3]$and $B[4\times 3]$multiplication of matrix is not possible.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

