
If A = $\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
\end{matrix} \right]$ then A is
A . symmetric
B . Skew- symmetric
C . Non- singular
D . Singular
Answer
217.5k+ views
Hint: In this question, we have given a matrix A and we have to find out the option which follows the matrix A. For this, we use the properties of the given options. First we check whether it is symmetric or non- symmetric. Then we find out the determinant to check whether the matrix is singular or non- singular or mark the option accordingly.
Complete Step- by- step Solution:
Given matrix is A = $\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
\end{matrix} \right]$
Given matrix is of $3\times 3$ order.
First we check whether A is symmetric or skew symmetric.
${{A}^{T}}=\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
\end{matrix} \right]$
$A\ne {{A}^{T}}$
It is not a symmetric matrix
And ${{A}^{T}}\ne -A$
Hence it is not a skew symmetric matrix
Now we check whether it is singular or non singular matrix
For this we find out the determinant
$|A|=1[1-0]-0[0-1]+1[0-1]$
$|A|=1-1$
$|A|=0$
Hence, it is a singular matrix.
Thus, Option (D) is correct.
Note: Students make mistakes in finding out the transpose of a matrix. They get confused while finding the transpose. Transpose means interchanging of rows and columns. Remember that in transpose, the first row becomes the first column, the second row becomes the second column and the third row becomes the third column. If the transpose of matrix A, ${{A}^{T}}=-A$ then we call it a skew- symmetric matrix.
Complete Step- by- step Solution:
Given matrix is A = $\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
\end{matrix} \right]$
Given matrix is of $3\times 3$ order.
First we check whether A is symmetric or skew symmetric.
${{A}^{T}}=\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
\end{matrix} \right]$
$A\ne {{A}^{T}}$
It is not a symmetric matrix
And ${{A}^{T}}\ne -A$
Hence it is not a skew symmetric matrix
Now we check whether it is singular or non singular matrix
For this we find out the determinant
$|A|=1[1-0]-0[0-1]+1[0-1]$
$|A|=1-1$
$|A|=0$
Hence, it is a singular matrix.
Thus, Option (D) is correct.
Note: Students make mistakes in finding out the transpose of a matrix. They get confused while finding the transpose. Transpose means interchanging of rows and columns. Remember that in transpose, the first row becomes the first column, the second row becomes the second column and the third row becomes the third column. If the transpose of matrix A, ${{A}^{T}}=-A$ then we call it a skew- symmetric matrix.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

