
If $A = \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$, then
A. ${A^2} = A$
B. ${B^2} = B$
C. $AB \ne BA$
D. $AB = BA$
Answer
164.7k+ views
Hint: In this question, we have to check that the two given matrices are satisfying which condition is given in the options. To solve these types of questions, we must know how to do the multiplication of the matrix.
Complete step by step Solution:
Given: $\;A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ and $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
For checking whether the two given matrices are satisfying the condition of option A or not, that is, whether ${A^2} = A$ or not:
Step 1: To find ${A^2}$, we have to multiply $A$ with $A$. In order to do that, multiply and add each element of the first row of matrix $A$ with the respective elements of the first column of matrix $A$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R1 = \left[ {(1 \times 1) + (2 \times ( - 3))} \right]$
Step 2: Multiply and add each element of the first row of matrix $A$ with the respective elements of the second column of matrix $A$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R2 = \left[ {(1 \times 2) + (2 \times 0)} \right]$
Step 3: Multiply and add each element of the second row of matrix $A$ with the respective elements of the first column of matrix $A$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R3 = \left[ {(( - 3) \times 1) + (0 \times ( - 3))} \right]$
Step 4: Multiply and add each element of the second row of matrix $A$ with the respective elements of the second column of matrix $A$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R4 = \left[ {(( - 3) \times 2) + (0 \times 0)} \right]$
Step 5: Matrix multiplication of matrix $A$ and $A$, that is,${A^2}$will be,
${A^2} = \left[ {\begin{array}{*{20}{c}}
{R1}&{R2} \\
{R3}&{R4}
\end{array}} \right]$
Now, substituting the values of $R1,R2,R3$ and $R4,$ we get:
\[{A^2} = \left[ {\begin{array}{*{20}{c}}
{(1 \times 1) + (2 \times ( - 3))}&{(1 \times 2) + (2 \times 0)} \\
{(( - 3) \times 1) + (0 \times ( - 3))}&{(( - 3) \times 2) + (0 \times 0)}
\end{array}} \right]\]
After solving the above expressions, we get:
${A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + \left( { - 6} \right)}&{\;\;\;\;\;\;2 + 0} \\
{( - 3) + 0}&{( - 6) + 0}
\end{array}} \right]$
${A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 5}&2 \\
{ - 3}&{ - 6}
\end{array}} \right] \ne A$ $(\because A = \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right])$
So, the condition of option A is not satisfied.
For checking whether the two given matrices are satisfying the condition of option B or not, that is, whether ${B^2} = B$ or not:
Step 1: To find \[{B^2}\], we have to multiply $B$ with $B$. In order to do that, multiply and add each element of the first row of matrix $B$ with the respective elements of the first column of matrix $B$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R1 = \left[ {(( - 1) \times ( - 1)) + (0 \times 2)} \right]$
Step 2: Multiply and add each element of the first row of matrix $B$ with the respective elements of the second column of matrix $B$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R2 = \left[ {(( - 1) \times 0) + (0 \times 3)} \right]$
Step 3: Multiply and add each element of the second row of matrix $B$ with the respective elements of the first column of matrix $B$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R3 = \left[ {(2 \times ( - 1) + (3 \times 2)} \right]$
Step 4: Multiply and add each element of the second row of matrix $B$ with the respective elements of the second column of matrix $B$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R4 = \left[ {(2 \times 0) + (3 \times 3)} \right]$
Step 5: Matrix multiplication of matrix $B$ and $B$, that is,\[{B^2}\]will be,
${B^2} = \left[ {\begin{array}{*{20}{c}}
{R1}&{R2} \\
{R3}&{R4}
\end{array}} \right]$
Now, substituting the values of $R1,R2,R3$ and $R4,$ we get:
\[{B^2} = \left[ {\begin{array}{*{20}{c}}
{(( - 1) \times ( - 1)) + (0 \times 2)}&{(( - 1) \times 0) + (0 \times 3)} \\
{(2 \times ( - 1)) + (3 \times 2)}&{(2 \times 0) + (3 \times 3)}
\end{array}} \right]\]
After solving the above expressions, we get:
${B^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 0}&{0 + 0} \\
{( - 2) + 6}&{0 + 9}
\end{array}} \right]$
${B^2} = \left[ {\begin{array}{*{20}{c}}
1&0 \\
4&9
\end{array}} \right] \ne B$ $(\because B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right])$
So, the condition of option B is not satisfied.
For checking whether the two given matrices are satisfying the condition of options C and D or not, that is, whether $AB \ne BA$ and $AB = BA$:
For finding$AB$,
Step 1: Multiply and add each element of the first row of matrix $A$with the respective elements of the first column of matrix $B$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R1 = \left[ {(1 \times ( - 1)) + (2 \times 2)} \right]$
Step 2: Multiply and add each element of the first row of matrix $A$ with the respective elements of the second column of matrix $B$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R2 = \left[ {(1 \times 0) + (2 \times 3)} \right]$
Step 3: Multiply and add each element of the second row of matrix $A$ with the respective elements of the first column of matrix $B$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R3 = \left[ {(( - 3) \times ( - 1)) + (0 \times 2)} \right]$
Step 4: Multiply and add each element of the second row of matrix $A$ with the respective elements of the second column of matrix $B$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R4 = \left[ {(( - 3) \times 0) + (0 \times 3)} \right]$
Step 5: Matrix multiplication of matrix $A$ and $B$ will be,
$AB = \left[ {\begin{array}{*{20}{c}}
{R1}&{R2} \\
{R3}&{R4}
\end{array}} \right]$
Now, substituting the values of $R1,R2,R3$ and $R4,$ we get:
$AB = \left[ {\begin{array}{*{20}{c}}
{(1 \times ( - 1)) + (2 \times 2)}&{(1 \times 0) + (2 \times 3)} \\
{(( - 3) \times ( - 1)) + (0 \times 2)}&{(( - 3) \times 0) + (0 \times 3)}
\end{array}} \right]$
After solving the above expressions, we get:
$AB = \left[ {\begin{array}{*{20}{c}}
{( - 1) + 4}&{0 + 6} \\
{3 + 0}&{0 + 0}
\end{array}} \right]$
$AB = \left[ {\begin{array}{*{20}{c}}
3&6 \\
3&0
\end{array}} \right]$
Now, for finding $BA$,
Step 1: Multiply and add each element of the first row of matrix $B$ with the respective elements of the first column of matrix $A$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R1 = \left[ {(( - 1) \times 1) + (0 \times ( - 3))} \right]$
Step 2: Multiply and add each element of the first row of matrix $B$ with the respective elements of the second column of matrix $A$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R2 = \left[ {(( - 1) \times 2) + (0 \times 0)} \right]$
Step 3: Multiply and add each element of the second row of matrix $B$ with the respective elements of the first column of matrix $A$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R3 = \left[ {(2 \times 1) + (3 \times ( - 3))} \right]$
Step 4: Multiply and add each element of the second row of matrix $B$ with the respective elements of the second column of matrix $A$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R4 = \left[ {(2 \times 2) + (3 \times 0)} \right]$
Step 5: Matrix multiplication of matrix $B$ and $A$ will be,
$BA = \left[ {\begin{array}{*{20}{c}}
{R1}&{R2} \\
{R3}&{R4}
\end{array}} \right]$
Now, substituting the values of $R1,R2,R3$ and $R4,$ we get:
$BA = \left[ {\begin{array}{*{20}{c}}
{(( - 1) \times 1) + (0 \times ( - 3))}&{(( - 1) \times 2) + (0 \times 0)} \\
{(2 \times 1) + (3 \times ( - 3))}&{(2 \times 2) + (3 \times 0)}
\end{array}} \right]$
After solving the above expressions, we get:
$BA = \left[ {\begin{array}{*{20}{c}}
{( - 1) + 0}&{( - 2) + 0} \\
{2 + ( - 9)}&{4 + 0}
\end{array}} \right]$
$BA = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 2} \\
{ - 7}&4
\end{array}} \right]$
Now, on comparing $AB$ and $BA$, we can conclude that,
$AB \ne BA$
Therefore, the correct option is (C).
Additional Information: In this type of question, where we have to multiply two given matrices, whose order is different, like a matrix A of order \[\left( {m \times n} \right)\], where ‘m’ is the number of rows of matrix A and ‘n’ is the number of columns of matrix A.
Another matrix B of order \[\left( {n \times p} \right)\], where ‘n’ is the number of rows of matrix B and ‘p’ is the number of columns of matrix B.
Then, the order of the resultant matrix should be\[\left( {m \times p} \right)\].
Also, if we know the properties of matrix multiplication, we don’t need to multiply and check with the options. We can directly choose the correct answer.
Note: In this type of question, where we have to multiply two given matrices, if the number of columns of the first matrix is equal to the number of rows of the second matrix, then multiplication is possible. Otherwise, multiplication is not possible.
Complete step by step Solution:
Given: $\;A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ and $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
For checking whether the two given matrices are satisfying the condition of option A or not, that is, whether ${A^2} = A$ or not:
Step 1: To find ${A^2}$, we have to multiply $A$ with $A$. In order to do that, multiply and add each element of the first row of matrix $A$ with the respective elements of the first column of matrix $A$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R1 = \left[ {(1 \times 1) + (2 \times ( - 3))} \right]$
Step 2: Multiply and add each element of the first row of matrix $A$ with the respective elements of the second column of matrix $A$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R2 = \left[ {(1 \times 2) + (2 \times 0)} \right]$
Step 3: Multiply and add each element of the second row of matrix $A$ with the respective elements of the first column of matrix $A$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R3 = \left[ {(( - 3) \times 1) + (0 \times ( - 3))} \right]$
Step 4: Multiply and add each element of the second row of matrix $A$ with the respective elements of the second column of matrix $A$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R4 = \left[ {(( - 3) \times 2) + (0 \times 0)} \right]$
Step 5: Matrix multiplication of matrix $A$ and $A$, that is,${A^2}$will be,
${A^2} = \left[ {\begin{array}{*{20}{c}}
{R1}&{R2} \\
{R3}&{R4}
\end{array}} \right]$
Now, substituting the values of $R1,R2,R3$ and $R4,$ we get:
\[{A^2} = \left[ {\begin{array}{*{20}{c}}
{(1 \times 1) + (2 \times ( - 3))}&{(1 \times 2) + (2 \times 0)} \\
{(( - 3) \times 1) + (0 \times ( - 3))}&{(( - 3) \times 2) + (0 \times 0)}
\end{array}} \right]\]
After solving the above expressions, we get:
${A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + \left( { - 6} \right)}&{\;\;\;\;\;\;2 + 0} \\
{( - 3) + 0}&{( - 6) + 0}
\end{array}} \right]$
${A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 5}&2 \\
{ - 3}&{ - 6}
\end{array}} \right] \ne A$ $(\because A = \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right])$
So, the condition of option A is not satisfied.
For checking whether the two given matrices are satisfying the condition of option B or not, that is, whether ${B^2} = B$ or not:
Step 1: To find \[{B^2}\], we have to multiply $B$ with $B$. In order to do that, multiply and add each element of the first row of matrix $B$ with the respective elements of the first column of matrix $B$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R1 = \left[ {(( - 1) \times ( - 1)) + (0 \times 2)} \right]$
Step 2: Multiply and add each element of the first row of matrix $B$ with the respective elements of the second column of matrix $B$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R2 = \left[ {(( - 1) \times 0) + (0 \times 3)} \right]$
Step 3: Multiply and add each element of the second row of matrix $B$ with the respective elements of the first column of matrix $B$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R3 = \left[ {(2 \times ( - 1) + (3 \times 2)} \right]$
Step 4: Multiply and add each element of the second row of matrix $B$ with the respective elements of the second column of matrix $B$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R4 = \left[ {(2 \times 0) + (3 \times 3)} \right]$
Step 5: Matrix multiplication of matrix $B$ and $B$, that is,\[{B^2}\]will be,
${B^2} = \left[ {\begin{array}{*{20}{c}}
{R1}&{R2} \\
{R3}&{R4}
\end{array}} \right]$
Now, substituting the values of $R1,R2,R3$ and $R4,$ we get:
\[{B^2} = \left[ {\begin{array}{*{20}{c}}
{(( - 1) \times ( - 1)) + (0 \times 2)}&{(( - 1) \times 0) + (0 \times 3)} \\
{(2 \times ( - 1)) + (3 \times 2)}&{(2 \times 0) + (3 \times 3)}
\end{array}} \right]\]
After solving the above expressions, we get:
${B^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 0}&{0 + 0} \\
{( - 2) + 6}&{0 + 9}
\end{array}} \right]$
${B^2} = \left[ {\begin{array}{*{20}{c}}
1&0 \\
4&9
\end{array}} \right] \ne B$ $(\because B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right])$
So, the condition of option B is not satisfied.
For checking whether the two given matrices are satisfying the condition of options C and D or not, that is, whether $AB \ne BA$ and $AB = BA$:
For finding$AB$,
Step 1: Multiply and add each element of the first row of matrix $A$with the respective elements of the first column of matrix $B$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R1 = \left[ {(1 \times ( - 1)) + (2 \times 2)} \right]$
Step 2: Multiply and add each element of the first row of matrix $A$ with the respective elements of the second column of matrix $B$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R2 = \left[ {(1 \times 0) + (2 \times 3)} \right]$
Step 3: Multiply and add each element of the second row of matrix $A$ with the respective elements of the first column of matrix $B$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$ $B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R3 = \left[ {(( - 3) \times ( - 1)) + (0 \times 2)} \right]$
Step 4: Multiply and add each element of the second row of matrix $A$ with the respective elements of the second column of matrix $B$, as shown below:
$A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$
Result for this will be, $R4 = \left[ {(( - 3) \times 0) + (0 \times 3)} \right]$
Step 5: Matrix multiplication of matrix $A$ and $B$ will be,
$AB = \left[ {\begin{array}{*{20}{c}}
{R1}&{R2} \\
{R3}&{R4}
\end{array}} \right]$
Now, substituting the values of $R1,R2,R3$ and $R4,$ we get:
$AB = \left[ {\begin{array}{*{20}{c}}
{(1 \times ( - 1)) + (2 \times 2)}&{(1 \times 0) + (2 \times 3)} \\
{(( - 3) \times ( - 1)) + (0 \times 2)}&{(( - 3) \times 0) + (0 \times 3)}
\end{array}} \right]$
After solving the above expressions, we get:
$AB = \left[ {\begin{array}{*{20}{c}}
{( - 1) + 4}&{0 + 6} \\
{3 + 0}&{0 + 0}
\end{array}} \right]$
$AB = \left[ {\begin{array}{*{20}{c}}
3&6 \\
3&0
\end{array}} \right]$
Now, for finding $BA$,
Step 1: Multiply and add each element of the first row of matrix $B$ with the respective elements of the first column of matrix $A$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R1 = \left[ {(( - 1) \times 1) + (0 \times ( - 3))} \right]$
Step 2: Multiply and add each element of the first row of matrix $B$ with the respective elements of the second column of matrix $A$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R2 = \left[ {(( - 1) \times 2) + (0 \times 0)} \right]$
Step 3: Multiply and add each element of the second row of matrix $B$ with the respective elements of the first column of matrix $A$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R3 = \left[ {(2 \times 1) + (3 \times ( - 3))} \right]$
Step 4: Multiply and add each element of the second row of matrix $B$ with the respective elements of the second column of matrix $A$, as shown below:
$B = \;\left[ {\begin{array}{*{20}{c}}
{ - 1}&0 \\
2&3
\end{array}} \right]$ $A = \;\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 3}&0
\end{array}} \right]$
Result for this will be, $R4 = \left[ {(2 \times 2) + (3 \times 0)} \right]$
Step 5: Matrix multiplication of matrix $B$ and $A$ will be,
$BA = \left[ {\begin{array}{*{20}{c}}
{R1}&{R2} \\
{R3}&{R4}
\end{array}} \right]$
Now, substituting the values of $R1,R2,R3$ and $R4,$ we get:
$BA = \left[ {\begin{array}{*{20}{c}}
{(( - 1) \times 1) + (0 \times ( - 3))}&{(( - 1) \times 2) + (0 \times 0)} \\
{(2 \times 1) + (3 \times ( - 3))}&{(2 \times 2) + (3 \times 0)}
\end{array}} \right]$
After solving the above expressions, we get:
$BA = \left[ {\begin{array}{*{20}{c}}
{( - 1) + 0}&{( - 2) + 0} \\
{2 + ( - 9)}&{4 + 0}
\end{array}} \right]$
$BA = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 2} \\
{ - 7}&4
\end{array}} \right]$
Now, on comparing $AB$ and $BA$, we can conclude that,
$AB \ne BA$
Therefore, the correct option is (C).
Additional Information: In this type of question, where we have to multiply two given matrices, whose order is different, like a matrix A of order \[\left( {m \times n} \right)\], where ‘m’ is the number of rows of matrix A and ‘n’ is the number of columns of matrix A.
Another matrix B of order \[\left( {n \times p} \right)\], where ‘n’ is the number of rows of matrix B and ‘p’ is the number of columns of matrix B.
Then, the order of the resultant matrix should be\[\left( {m \times p} \right)\].
Also, if we know the properties of matrix multiplication, we don’t need to multiply and check with the options. We can directly choose the correct answer.
Note: In this type of question, where we have to multiply two given matrices, if the number of columns of the first matrix is equal to the number of rows of the second matrix, then multiplication is possible. Otherwise, multiplication is not possible.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
