
If \[A = \left[ {\begin{array}{*{20}{c}}
0&2 \\
3&{ - 4}
\end{array}} \right]\] and \[kA = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\], then the values of k, a, b are respectively
A. -6, -12, -18
B. -6, 4, 9
C. -6, -4, -9
D. 6,12,18
Answer
161.1k+ views
Hint: In the given problem we find substitute the matrix \[A = \left[ {\begin{array}{*{20}{c}}
0&2 \\
3&{ - 4}
\end{array}} \right]\] in \[kA = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\]. We then multiply the scalar k with all the elements of matrix A. The corresponding terms in both the matrices are then equated to find the unknowns.
Complete step by step solution:
We are given that,
\[kA = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\] and \[A = \left[ {\begin{array}{*{20}{c}}
0&2 \\
3&{ - 4}
\end{array}} \right]\]
Substituting matrix A in kA we get,
\[k\left[ {\begin{array}{*{20}{c}}
0&2 \\
3&{ - 4}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
0&{2k} \\
{3k}&{ - 4k}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\]
Equating the corresponding terms we get,
\[2k = 3a,\,\,\,\,3k = 2b,\,\,\,\, - 4k = 24\]
\[ \Rightarrow a = \dfrac{{2k}}{3},\,\,\,b = \dfrac{{3k}}{2},\,\,\,k = - 6\]
\[ \Rightarrow k = - 6,\,\,\,a = - 4,\,\,\,b = - 9\]
Option C. is the correct answer.
Note: A matrix can be multiplied with scalar numbers. If A = \[{\left[ {{a_{ij}}} \right]_{m \times n}}\] (a matrix of size \[m \times n\]) and k is a scalar, each of the elements of A is multiplied by k, resulting in kA=\[{\left[ {k{a_{ij}}} \right]_{m \times n}}\] to create the resultant matrix. One must make sure the signs are written correctly when writing the value of a, b and k.
0&2 \\
3&{ - 4}
\end{array}} \right]\] in \[kA = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\]. We then multiply the scalar k with all the elements of matrix A. The corresponding terms in both the matrices are then equated to find the unknowns.
Complete step by step solution:
We are given that,
\[kA = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\] and \[A = \left[ {\begin{array}{*{20}{c}}
0&2 \\
3&{ - 4}
\end{array}} \right]\]
Substituting matrix A in kA we get,
\[k\left[ {\begin{array}{*{20}{c}}
0&2 \\
3&{ - 4}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
0&{2k} \\
{3k}&{ - 4k}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{3a} \\
{2b}&{24}
\end{array}} \right]\]
Equating the corresponding terms we get,
\[2k = 3a,\,\,\,\,3k = 2b,\,\,\,\, - 4k = 24\]
\[ \Rightarrow a = \dfrac{{2k}}{3},\,\,\,b = \dfrac{{3k}}{2},\,\,\,k = - 6\]
\[ \Rightarrow k = - 6,\,\,\,a = - 4,\,\,\,b = - 9\]
Option C. is the correct answer.
Note: A matrix can be multiplied with scalar numbers. If A = \[{\left[ {{a_{ij}}} \right]_{m \times n}}\] (a matrix of size \[m \times n\]) and k is a scalar, each of the elements of A is multiplied by k, resulting in kA=\[{\left[ {k{a_{ij}}} \right]_{m \times n}}\] to create the resultant matrix. One must make sure the signs are written correctly when writing the value of a, b and k.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
