
If \[a\] is perpendicular to \[b\] and \[c\], \[\left| a \right| = 2\], \[\left| b \right| = 3\], \[\left| c \right| = 4\]and the angle between \[b\] and \[c\]is \[\dfrac{{2\pi }}{3}\]. What is the value of \[\left[ {a\,b\,c} \right]\]?
A. \[4\sqrt 3 \]
B. \[6\sqrt 3 \]
C. \[12\sqrt 3 \]
D. \[18\sqrt 3 \]
Answer
162.9k+ views
Hint The formula of \[\left[ {a\,b\,c} \right]\] is \[a \cdot \left( {b \times c} \right)\]. To calculate \[\left[ {a\,b\,c} \right]\], first we will find dot product between \[\left( {b \times c} \right)\] and \[a\] by using the formula \[\left| a \right| \cdot \left| {b \times c} \right|\cos \theta \]. Then apply the formula of cross product \[\left| b \right|\left| c \right|\sin \theta \] on \[\left( {b \times c} \right)\] and find the magnitude of the vector \[\left| b \right|\left| c \right|\sin \theta \]. Then multiply the magnitude of \[\left| {b \times c} \right|\]with \[\left| a \right|\].
Formula used
\[a \cdot b = \left| a \right|\left| b \right|\cos \theta \], where \[\theta \] is angle between \[a\] and \[b\].
\[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \], where \[\theta \] is angle between \[a\] and \[b\].
\[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
Complete step by step solution
Given triple product is \[\left[ {a\,b\,c} \right]\].
Apply the formula \[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
\[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
\[a\] is perpendicular to \[b\] and \[c\]and the cross product of \[b\] and \[c\] is a vector that is perpendicular to the plane where \[b\] and \[c\] lie. So, \[a\] and \[\left( {b \times c} \right)\] is parallel to each other. Therefore the angle between \[a\] and \[\left( {b \times c} \right)\] is \[{0^ \circ }\].
Apply dot product formula \[a \cdot b = \left| a \right|\left| b \right|\cos \theta \] on \[a \cdot \left( {b \times c} \right)\]
\[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\cos {0^ \circ }\]
Now putting \[\cos {0^ \circ } = 1\].
\[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\] …….(1)
Now apply cross product formula on \[\left( {b \times c} \right)\]
\[\left| {b \times c} \right| = \left| b \right|\left| c \right|\sin \dfrac{{2\pi }}{3}\] [Since the angle between \[b\] and \[c\]is \[\dfrac{{2\pi }}{3}\]]
Now we will calculate the value of \[\sin \dfrac{{2\pi }}{3}\].
\[\sin \dfrac{{2\pi }}{3} = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{6}} \right)\]
Apply complement formula \[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
\[\sin \dfrac{{2\pi }}{3} = \cos \left( {\dfrac{\pi }{6}} \right)\]
\[ \Rightarrow \sin \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2}\]
Now we will put the value of \[\left| b \right|\], \[\left| c \right|\] and \[\sin \dfrac{{2\pi }}{3}\] in \[\left| {b \times c} \right| = \left| b \right|\left| c \right|\sin \dfrac{{2\pi }}{3}\]
\[\left| {b \times c} \right| = 3 \cdot 4 \cdot \dfrac{{\sqrt 3 }}{2}\]
\[ \Rightarrow \left| {b \times c} \right| = 6\sqrt 3 \]
Now we will calculate the value of \[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\] by substituting the value of \[\left| a \right|\] and \[\left| {b \times c} \right|\].
\[\left[ {a\,b\,c} \right] = 2 \cdot 6\sqrt 3 \]
\[ \Rightarrow \left[ {a\,b\,c} \right] = 12\sqrt 3 \]
Hence the correct option is C.
Note Students are confused with the formula cross product and magnitude of a cross product. Magnitude of a cross product is a scalar and cross product is a vector. The formula of cross product is \[a \times b = \left| a \right|\left| b \right|\sin \theta \widehat n\] and the magnitude of a cross product is \[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \]. Here we need to apply the formula \[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \] to get the value of \[\left| {b \times c} \right|\].
Formula used
\[a \cdot b = \left| a \right|\left| b \right|\cos \theta \], where \[\theta \] is angle between \[a\] and \[b\].
\[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \], where \[\theta \] is angle between \[a\] and \[b\].
\[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
Complete step by step solution
Given triple product is \[\left[ {a\,b\,c} \right]\].
Apply the formula \[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
\[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
\[a\] is perpendicular to \[b\] and \[c\]and the cross product of \[b\] and \[c\] is a vector that is perpendicular to the plane where \[b\] and \[c\] lie. So, \[a\] and \[\left( {b \times c} \right)\] is parallel to each other. Therefore the angle between \[a\] and \[\left( {b \times c} \right)\] is \[{0^ \circ }\].
Apply dot product formula \[a \cdot b = \left| a \right|\left| b \right|\cos \theta \] on \[a \cdot \left( {b \times c} \right)\]
\[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\cos {0^ \circ }\]
Now putting \[\cos {0^ \circ } = 1\].
\[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\] …….(1)
Now apply cross product formula on \[\left( {b \times c} \right)\]
\[\left| {b \times c} \right| = \left| b \right|\left| c \right|\sin \dfrac{{2\pi }}{3}\] [Since the angle between \[b\] and \[c\]is \[\dfrac{{2\pi }}{3}\]]
Now we will calculate the value of \[\sin \dfrac{{2\pi }}{3}\].
\[\sin \dfrac{{2\pi }}{3} = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{6}} \right)\]
Apply complement formula \[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
\[\sin \dfrac{{2\pi }}{3} = \cos \left( {\dfrac{\pi }{6}} \right)\]
\[ \Rightarrow \sin \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2}\]
Now we will put the value of \[\left| b \right|\], \[\left| c \right|\] and \[\sin \dfrac{{2\pi }}{3}\] in \[\left| {b \times c} \right| = \left| b \right|\left| c \right|\sin \dfrac{{2\pi }}{3}\]
\[\left| {b \times c} \right| = 3 \cdot 4 \cdot \dfrac{{\sqrt 3 }}{2}\]
\[ \Rightarrow \left| {b \times c} \right| = 6\sqrt 3 \]
Now we will calculate the value of \[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\] by substituting the value of \[\left| a \right|\] and \[\left| {b \times c} \right|\].
\[\left[ {a\,b\,c} \right] = 2 \cdot 6\sqrt 3 \]
\[ \Rightarrow \left[ {a\,b\,c} \right] = 12\sqrt 3 \]
Hence the correct option is C.
Note Students are confused with the formula cross product and magnitude of a cross product. Magnitude of a cross product is a scalar and cross product is a vector. The formula of cross product is \[a \times b = \left| a \right|\left| b \right|\sin \theta \widehat n\] and the magnitude of a cross product is \[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \]. Here we need to apply the formula \[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \] to get the value of \[\left| {b \times c} \right|\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
