
If \[a\] is perpendicular to \[b\] and \[c\], \[\left| a \right| = 2\], \[\left| b \right| = 3\], \[\left| c \right| = 4\]and the angle between \[b\] and \[c\]is \[\dfrac{{2\pi }}{3}\]. What is the value of \[\left[ {a\,b\,c} \right]\]?
A. \[4\sqrt 3 \]
B. \[6\sqrt 3 \]
C. \[12\sqrt 3 \]
D. \[18\sqrt 3 \]
Answer
232.8k+ views
Hint The formula of \[\left[ {a\,b\,c} \right]\] is \[a \cdot \left( {b \times c} \right)\]. To calculate \[\left[ {a\,b\,c} \right]\], first we will find dot product between \[\left( {b \times c} \right)\] and \[a\] by using the formula \[\left| a \right| \cdot \left| {b \times c} \right|\cos \theta \]. Then apply the formula of cross product \[\left| b \right|\left| c \right|\sin \theta \] on \[\left( {b \times c} \right)\] and find the magnitude of the vector \[\left| b \right|\left| c \right|\sin \theta \]. Then multiply the magnitude of \[\left| {b \times c} \right|\]with \[\left| a \right|\].
Formula used
\[a \cdot b = \left| a \right|\left| b \right|\cos \theta \], where \[\theta \] is angle between \[a\] and \[b\].
\[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \], where \[\theta \] is angle between \[a\] and \[b\].
\[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
Complete step by step solution
Given triple product is \[\left[ {a\,b\,c} \right]\].
Apply the formula \[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
\[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
\[a\] is perpendicular to \[b\] and \[c\]and the cross product of \[b\] and \[c\] is a vector that is perpendicular to the plane where \[b\] and \[c\] lie. So, \[a\] and \[\left( {b \times c} \right)\] is parallel to each other. Therefore the angle between \[a\] and \[\left( {b \times c} \right)\] is \[{0^ \circ }\].
Apply dot product formula \[a \cdot b = \left| a \right|\left| b \right|\cos \theta \] on \[a \cdot \left( {b \times c} \right)\]
\[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\cos {0^ \circ }\]
Now putting \[\cos {0^ \circ } = 1\].
\[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\] …….(1)
Now apply cross product formula on \[\left( {b \times c} \right)\]
\[\left| {b \times c} \right| = \left| b \right|\left| c \right|\sin \dfrac{{2\pi }}{3}\] [Since the angle between \[b\] and \[c\]is \[\dfrac{{2\pi }}{3}\]]
Now we will calculate the value of \[\sin \dfrac{{2\pi }}{3}\].
\[\sin \dfrac{{2\pi }}{3} = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{6}} \right)\]
Apply complement formula \[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
\[\sin \dfrac{{2\pi }}{3} = \cos \left( {\dfrac{\pi }{6}} \right)\]
\[ \Rightarrow \sin \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2}\]
Now we will put the value of \[\left| b \right|\], \[\left| c \right|\] and \[\sin \dfrac{{2\pi }}{3}\] in \[\left| {b \times c} \right| = \left| b \right|\left| c \right|\sin \dfrac{{2\pi }}{3}\]
\[\left| {b \times c} \right| = 3 \cdot 4 \cdot \dfrac{{\sqrt 3 }}{2}\]
\[ \Rightarrow \left| {b \times c} \right| = 6\sqrt 3 \]
Now we will calculate the value of \[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\] by substituting the value of \[\left| a \right|\] and \[\left| {b \times c} \right|\].
\[\left[ {a\,b\,c} \right] = 2 \cdot 6\sqrt 3 \]
\[ \Rightarrow \left[ {a\,b\,c} \right] = 12\sqrt 3 \]
Hence the correct option is C.
Note Students are confused with the formula cross product and magnitude of a cross product. Magnitude of a cross product is a scalar and cross product is a vector. The formula of cross product is \[a \times b = \left| a \right|\left| b \right|\sin \theta \widehat n\] and the magnitude of a cross product is \[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \]. Here we need to apply the formula \[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \] to get the value of \[\left| {b \times c} \right|\].
Formula used
\[a \cdot b = \left| a \right|\left| b \right|\cos \theta \], where \[\theta \] is angle between \[a\] and \[b\].
\[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \], where \[\theta \] is angle between \[a\] and \[b\].
\[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
Complete step by step solution
Given triple product is \[\left[ {a\,b\,c} \right]\].
Apply the formula \[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
\[\left[ {a\,b\,c} \right] = a \cdot \left( {b \times c} \right)\]
\[a\] is perpendicular to \[b\] and \[c\]and the cross product of \[b\] and \[c\] is a vector that is perpendicular to the plane where \[b\] and \[c\] lie. So, \[a\] and \[\left( {b \times c} \right)\] is parallel to each other. Therefore the angle between \[a\] and \[\left( {b \times c} \right)\] is \[{0^ \circ }\].
Apply dot product formula \[a \cdot b = \left| a \right|\left| b \right|\cos \theta \] on \[a \cdot \left( {b \times c} \right)\]
\[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\cos {0^ \circ }\]
Now putting \[\cos {0^ \circ } = 1\].
\[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\] …….(1)
Now apply cross product formula on \[\left( {b \times c} \right)\]
\[\left| {b \times c} \right| = \left| b \right|\left| c \right|\sin \dfrac{{2\pi }}{3}\] [Since the angle between \[b\] and \[c\]is \[\dfrac{{2\pi }}{3}\]]
Now we will calculate the value of \[\sin \dfrac{{2\pi }}{3}\].
\[\sin \dfrac{{2\pi }}{3} = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{6}} \right)\]
Apply complement formula \[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \]
\[\sin \dfrac{{2\pi }}{3} = \cos \left( {\dfrac{\pi }{6}} \right)\]
\[ \Rightarrow \sin \dfrac{{2\pi }}{3} = \dfrac{{\sqrt 3 }}{2}\]
Now we will put the value of \[\left| b \right|\], \[\left| c \right|\] and \[\sin \dfrac{{2\pi }}{3}\] in \[\left| {b \times c} \right| = \left| b \right|\left| c \right|\sin \dfrac{{2\pi }}{3}\]
\[\left| {b \times c} \right| = 3 \cdot 4 \cdot \dfrac{{\sqrt 3 }}{2}\]
\[ \Rightarrow \left| {b \times c} \right| = 6\sqrt 3 \]
Now we will calculate the value of \[\left[ {a\,b\,c} \right] = \left| a \right|\left| {b \times c} \right|\] by substituting the value of \[\left| a \right|\] and \[\left| {b \times c} \right|\].
\[\left[ {a\,b\,c} \right] = 2 \cdot 6\sqrt 3 \]
\[ \Rightarrow \left[ {a\,b\,c} \right] = 12\sqrt 3 \]
Hence the correct option is C.
Note Students are confused with the formula cross product and magnitude of a cross product. Magnitude of a cross product is a scalar and cross product is a vector. The formula of cross product is \[a \times b = \left| a \right|\left| b \right|\sin \theta \widehat n\] and the magnitude of a cross product is \[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \]. Here we need to apply the formula \[\left| {a \times b} \right| = \left| a \right|\left| b \right|\sin \theta \] to get the value of \[\left| {b \times c} \right|\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

