
If a current- carrying loop is placed in a non- uniform magnetic field, then the loop
(a) Experiences a force
(b) Experiences a torque
(c) Will develop induced current
(d) Oscillates
(A) a, c are correct
(B) a, b, c are correct
(C) b, c, d are correct
(A) a, b, d are correct
Answer
134.7k+ views
Hint The question is saying that a current- carrying loop is placed in a non- uniform magnetic field. Since the magnetic flux is non-uniform the change in magnetic field intensity will apply a force on the current- carrying loop and as a result, it'll also apply a torque that is generated during the process. So let’s start solving this problem.
Complete Step-by-step solution
1. When a current- carrying conductor is placed in a magnetic field, it will experience a force. The force on a current- carrying coil placed in a magnetic field is given by Fleming's left- hand rule.
${\overrightarrow F _m} = i\left( {\overrightarrow l \times \overrightarrow B } \right)$
Where F is the force on the conductor
B is the magnitude of the magnetic field
i is the current in the conductor
l is the length of the current- carrying wire
From the above formula, force is directly proportional to the magnitude of the magnetic field, current in the wire, and the length of the wire.
2. The change in magnetic field intensity will insert a force on the loop and as a result, it’ll also insert a torque. The torque on a loop, with magnetic dipole moment $\overrightarrow \mu $ immersed in a magnetic field $\overrightarrow B $ is given by:
$\tau = \mu B\sin \theta $
The direction of the magnetic dipole moment is given by the right-hand rule for axial vectors. If a closed- loop having a current $I$ the magnetic dipole moment vector $\mu $ is defined as:
$\mu = IA$
Where $A$ is the area enclosed by the loop.
3. A current can be induced in a current- carrying conductor if it is exposed to a changing magnetic field. Then the strength of the current is proportional to the change of magnetic flux, as suggested by Faraday’s law of induction.
${\phi _B} = \iint_A {B.dA}$
The direction of the current can be determined by considering Lenz’s law, which says that an induced current will flow in such a way that it generates a magnetic field that opposes the change within the field that generated it.
The correct answer is (B) a, b, c are correct.
Note The change in the magnetic field to induce current may be produced in several ways; you can change the strength of the magnetic field, move the conductor in and out of the field, or change the distance between a magnet and the conductor, or change the area of a loop placed in a magnetic field.
Complete Step-by-step solution
1. When a current- carrying conductor is placed in a magnetic field, it will experience a force. The force on a current- carrying coil placed in a magnetic field is given by Fleming's left- hand rule.
${\overrightarrow F _m} = i\left( {\overrightarrow l \times \overrightarrow B } \right)$
Where F is the force on the conductor
B is the magnitude of the magnetic field
i is the current in the conductor
l is the length of the current- carrying wire
From the above formula, force is directly proportional to the magnitude of the magnetic field, current in the wire, and the length of the wire.
2. The change in magnetic field intensity will insert a force on the loop and as a result, it’ll also insert a torque. The torque on a loop, with magnetic dipole moment $\overrightarrow \mu $ immersed in a magnetic field $\overrightarrow B $ is given by:
$\tau = \mu B\sin \theta $
The direction of the magnetic dipole moment is given by the right-hand rule for axial vectors. If a closed- loop having a current $I$ the magnetic dipole moment vector $\mu $ is defined as:
$\mu = IA$
Where $A$ is the area enclosed by the loop.
3. A current can be induced in a current- carrying conductor if it is exposed to a changing magnetic field. Then the strength of the current is proportional to the change of magnetic flux, as suggested by Faraday’s law of induction.
${\phi _B} = \iint_A {B.dA}$
The direction of the current can be determined by considering Lenz’s law, which says that an induced current will flow in such a way that it generates a magnetic field that opposes the change within the field that generated it.
The correct answer is (B) a, b, c are correct.
Note The change in the magnetic field to induce current may be produced in several ways; you can change the strength of the magnetic field, move the conductor in and out of the field, or change the distance between a magnet and the conductor, or change the area of a loop placed in a magnetic field.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage
