
If a capacitor of \[8\mu F\] is connected to an \[220v,{\text{ }}100Hz\] ac source and the current passing through it is\[65mA\], then the RMS voltage across it is
(A) \[129.4V\]
(B) \[12.94V\]
(C) \[1.294V\]
(D) \[15V\]
Answer
135k+ views
Hint First, find the impedance due to the capacitance then find the value of the current in using the RMS value of the given source. The resulting value of the current will be in the RMS value only as we have used only the RMS value of the voltage.
Complete Step by step solution
Given the capacitance of a capacitor is \[C{\text{ }} = {\text{ }}8\mu F = 8 \times {10^{ - 6}}{\text{\;F}}\] since \[1\mu = {10^{ - 6}}\] units.
Also given the current passing through the capacitor is \[{I_{rms}} = 65mA = 0.065A\;\]
The frequency of the source is given as \[v = 100Hz\]
We know that the capacitive reactance for a capacitor is represented by \[{X_C}\]
Therefore \[{X_C} = 1/2\pi vC\]
By substituting the given values in the above equation we get
As \[{X_C} = \dfrac{1}{{2 \times 3.14 \times 100 \times 8 \times {{10}^{ - 6}}}} = 199\]
Since we know that the RMS voltage across the capacitor is
\[{V_{rms}} = {I_{rms}}{X_C} = 0.065 \times 199 = 12.94\;V\]
Hence the correct option is B
Note The value of the impedance has to be found carefully after calculating the value of the frequency of the source. Then we need to find the value of the RMS voltage of the source voltage carefully. Finding these two values carefully can solve the problem easily.
Complete Step by step solution
Given the capacitance of a capacitor is \[C{\text{ }} = {\text{ }}8\mu F = 8 \times {10^{ - 6}}{\text{\;F}}\] since \[1\mu = {10^{ - 6}}\] units.
Also given the current passing through the capacitor is \[{I_{rms}} = 65mA = 0.065A\;\]
The frequency of the source is given as \[v = 100Hz\]
We know that the capacitive reactance for a capacitor is represented by \[{X_C}\]
Therefore \[{X_C} = 1/2\pi vC\]
By substituting the given values in the above equation we get
As \[{X_C} = \dfrac{1}{{2 \times 3.14 \times 100 \times 8 \times {{10}^{ - 6}}}} = 199\]
Since we know that the RMS voltage across the capacitor is
\[{V_{rms}} = {I_{rms}}{X_C} = 0.065 \times 199 = 12.94\;V\]
Hence the correct option is B
Note The value of the impedance has to be found carefully after calculating the value of the frequency of the source. Then we need to find the value of the RMS voltage of the source voltage carefully. Finding these two values carefully can solve the problem easily.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage
