
If A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$ then $(A^{-1})^{3}$ is equal to
A. $\dfrac{1}{27}\begin{pmatrix}1 & -26 \\ 0 & 27\end{pmatrix}$
B. $\dfrac{1}{27}\begin{pmatrix}-1 & 26 \\ 0 & 27\end{pmatrix}$
C. $\dfrac{1}{27}\begin{pmatrix}1 & -26 \\ 0 & -27\end{pmatrix}$
D. $\dfrac{1}{27}\begin{pmatrix}-1 & -26 \\ 0 & -27\end{pmatrix}$
Answer
216.3k+ views
Hint:
We are given a matrix and need to evaluate $(A^{-1})^{3}$. For this, we need to find the inverse of A and perform matrix multiplication.
Complete Step-by-Step Answer:
Given, A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$.
We need to find the inverse of A, for this first we find the adjoint matrix of A.
The adjoint matrix of A is obtained by interchanging the diagonal elements and multiplying the off-diagonal elements by a negative sign.
$\therefore$ $ adj A$ = $\begin{pmatrix}1 & -2 \\ 0& 3\end{pmatrix}$
Determinant of A, $|A| = (3\times1)-(0\times1) = 3$
Inverse of A, $A^{-1} = \dfrac{1}{|A|}adj A$
$A^{-1} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
Now, we need to find $(A^{-1})^{3}$. For this, we need to multiply $A^{-1}$ three times with itself.
$(A^{-1})^{3} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-2)\times0 & 1\times(-2)+(-2)\times3 \\ 0\times1 + 3\times0 & 0\times(-2)+3\times3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+ 0 & -2-6 \\ 0 +0 & 0 + 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -8 \\ 0 & 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-8)\times0 & 1\times(-2)+(-8)\times3 \\ 0\times1+0\times9 & 0\times(-2)+9\times3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+0& -2-24 \\ 0+0 & 0+27\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -26\\ 0 & 27\end{pmatrix}$
Therefore, the correct answer is Option A.
Note:When we have to find $(A^{-1})^{3}$, this means we have to multiply the matrix $A^{-1}$ three times and does not mean to take the cube of the elements of $A^{-1}$. Be careful while multiplying the matrices.
We are given a matrix and need to evaluate $(A^{-1})^{3}$. For this, we need to find the inverse of A and perform matrix multiplication.
Complete Step-by-Step Answer:
Given, A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$.
We need to find the inverse of A, for this first we find the adjoint matrix of A.
The adjoint matrix of A is obtained by interchanging the diagonal elements and multiplying the off-diagonal elements by a negative sign.
$\therefore$ $ adj A$ = $\begin{pmatrix}1 & -2 \\ 0& 3\end{pmatrix}$
Determinant of A, $|A| = (3\times1)-(0\times1) = 3$
Inverse of A, $A^{-1} = \dfrac{1}{|A|}adj A$
$A^{-1} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
Now, we need to find $(A^{-1})^{3}$. For this, we need to multiply $A^{-1}$ three times with itself.
$(A^{-1})^{3} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-2)\times0 & 1\times(-2)+(-2)\times3 \\ 0\times1 + 3\times0 & 0\times(-2)+3\times3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+ 0 & -2-6 \\ 0 +0 & 0 + 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -8 \\ 0 & 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-8)\times0 & 1\times(-2)+(-8)\times3 \\ 0\times1+0\times9 & 0\times(-2)+9\times3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+0& -2-24 \\ 0+0 & 0+27\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -26\\ 0 & 27\end{pmatrix}$
Therefore, the correct answer is Option A.
Note:When we have to find $(A^{-1})^{3}$, this means we have to multiply the matrix $A^{-1}$ three times and does not mean to take the cube of the elements of $A^{-1}$. Be careful while multiplying the matrices.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

