
If A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$ then $(A^{-1})^{3}$ is equal to
A. $\dfrac{1}{27}\begin{pmatrix}1 & -26 \\ 0 & 27\end{pmatrix}$
B. $\dfrac{1}{27}\begin{pmatrix}-1 & 26 \\ 0 & 27\end{pmatrix}$
C. $\dfrac{1}{27}\begin{pmatrix}1 & -26 \\ 0 & -27\end{pmatrix}$
D. $\dfrac{1}{27}\begin{pmatrix}-1 & -26 \\ 0 & -27\end{pmatrix}$
Answer
232.8k+ views
Hint:
We are given a matrix and need to evaluate $(A^{-1})^{3}$. For this, we need to find the inverse of A and perform matrix multiplication.
Complete Step-by-Step Answer:
Given, A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$.
We need to find the inverse of A, for this first we find the adjoint matrix of A.
The adjoint matrix of A is obtained by interchanging the diagonal elements and multiplying the off-diagonal elements by a negative sign.
$\therefore$ $ adj A$ = $\begin{pmatrix}1 & -2 \\ 0& 3\end{pmatrix}$
Determinant of A, $|A| = (3\times1)-(0\times1) = 3$
Inverse of A, $A^{-1} = \dfrac{1}{|A|}adj A$
$A^{-1} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
Now, we need to find $(A^{-1})^{3}$. For this, we need to multiply $A^{-1}$ three times with itself.
$(A^{-1})^{3} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-2)\times0 & 1\times(-2)+(-2)\times3 \\ 0\times1 + 3\times0 & 0\times(-2)+3\times3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+ 0 & -2-6 \\ 0 +0 & 0 + 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -8 \\ 0 & 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-8)\times0 & 1\times(-2)+(-8)\times3 \\ 0\times1+0\times9 & 0\times(-2)+9\times3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+0& -2-24 \\ 0+0 & 0+27\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -26\\ 0 & 27\end{pmatrix}$
Therefore, the correct answer is Option A.
Note:When we have to find $(A^{-1})^{3}$, this means we have to multiply the matrix $A^{-1}$ three times and does not mean to take the cube of the elements of $A^{-1}$. Be careful while multiplying the matrices.
We are given a matrix and need to evaluate $(A^{-1})^{3}$. For this, we need to find the inverse of A and perform matrix multiplication.
Complete Step-by-Step Answer:
Given, A = $\begin{pmatrix}3 & 2 \\ 0 & 1\end{pmatrix}$.
We need to find the inverse of A, for this first we find the adjoint matrix of A.
The adjoint matrix of A is obtained by interchanging the diagonal elements and multiplying the off-diagonal elements by a negative sign.
$\therefore$ $ adj A$ = $\begin{pmatrix}1 & -2 \\ 0& 3\end{pmatrix}$
Determinant of A, $|A| = (3\times1)-(0\times1) = 3$
Inverse of A, $A^{-1} = \dfrac{1}{|A|}adj A$
$A^{-1} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
Now, we need to find $(A^{-1})^{3}$. For this, we need to multiply $A^{-1}$ three times with itself.
$(A^{-1})^{3} = \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\times \dfrac{1}{3}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-2)\times0 & 1\times(-2)+(-2)\times3 \\ 0\times1 + 3\times0 & 0\times(-2)+3\times3\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+ 0 & -2-6 \\ 0 +0 & 0 + 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -8 \\ 0 & 9\end{pmatrix}\begin{pmatrix}1 & -2 \\ 0 & 3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1\times1+(-8)\times0 & 1\times(-2)+(-8)\times3 \\ 0\times1+0\times9 & 0\times(-2)+9\times3\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1+0& -2-24 \\ 0+0 & 0+27\end{pmatrix}$
$(A^{-1})^{3} = \dfrac{1}{27}\begin{pmatrix}1& -26\\ 0 & 27\end{pmatrix}$
Therefore, the correct answer is Option A.
Note:When we have to find $(A^{-1})^{3}$, this means we have to multiply the matrix $A^{-1}$ three times and does not mean to take the cube of the elements of $A^{-1}$. Be careful while multiplying the matrices.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

