
If a be a constant vector and b be a vector of constant magnitude such that $∣\vec {b}∣$=$\dfrac{a}{2}$ and $∣\vec {a}∣ \neq 0$. then maximum value of angle between $\vec a$ and $\vec a + \vec b$ is:
A) $\dfrac{{5\pi }}{6}$
B) $\dfrac{{5\pi }}{3}$
C) $\dfrac{{2\pi }}{3}$
D) $\dfrac{\pi }{6}$
Answer
144.6k+ views
Hint: A vector is represented by a line with an arrowhead. The point where the arrow starts is called the origin of the vector and the point where the arrow ends is called the tip. A vector remains unchanged when it is displaced parallel to itself.
Complete step by step solution:
Consider the vector b makes an angle $\theta $ with the negative side of vector a. Then the resultant component in the x-direction is given by
$(a + b)_x$ $ = a - b\cos \theta $
$ \Rightarrow $ $(a + b)_x$ $ = a - \dfrac{a}{2}\cos \theta $ $\left( {\because b = \dfrac{a}{2}} \right)$
$ \Rightarrow $ $(a + b)_x $ = $\dfrac{a}{2}(2 - \cos \theta )$
Similarly, the resultant vector of the y component is given by
$(a + b)_y $ = $b\sin \theta $
$ \Rightarrow $ $(a + b)_y $ = $\dfrac{a}{2}\sin \theta $\[\]$\left( {\because b = \dfrac{a}{2}} \right)$
We know that according to the parallelogram law of vector addition, the angle between the resultant with the first vector is given by,
$\tan \alpha = \left( {\dfrac{{\dfrac{a}{2}\sin \theta }}{{\dfrac{a}{2}\left( {2 + \cos \theta } \right)}}} \right) = \dfrac{{\sin \theta }}{{(2 + \cos \theta )}}$
If α has to be maximum, then $\dfrac{{d\alpha }}{{d\theta }}$ must be equal to zero, thus we have $\dfrac{d}{{d\theta }}\left( {\tan \alpha } \right) = \dfrac{d}{{d\theta }}\left( {\dfrac{{\sin \theta }}{{2 + \cos \theta }}} \right)$
\[ \Rightarrow se{c^2}\alpha \left( {\dfrac{{d\alpha }}{{d\theta }}} \right) = \dfrac{{\sin \theta \left( { - \sin \theta } \right) - \left( {2 + \cos \theta } \right)\left( {\cos \theta } \right)}}{{{{(2 + cos\theta )}^2}}}\]
$
\Rightarrow - si{n^2}\theta - 2\cos \theta - co{s^2}\theta = 0 \\
\Rightarrow 2\cos \theta = - 1 \\
\Rightarrow \theta = \dfrac{{2\pi }}{3} \\
$
Thus for the above value $\theta $, the angle between the resultant and vector a is maximum.
$\therefore $The maximum value of the angle \[\alpha \]is,
$\tan \alpha = \dfrac{{\sin \theta }}{{(2 + \cos \theta )}}$
Substituting the value of $\theta $, we get
\[ \Rightarrow \tan \alpha = \dfrac{{\sin \left( {\dfrac{{2\pi }}{3}} \right)}}{{(2 + \cos \left( {\dfrac{{2\pi }}{3}} \right))}}\] \[(\because \theta = \dfrac{{2\pi }}{3})\]
$ \Rightarrow \tan \alpha = \dfrac{{\;\sqrt {\dfrac{3}{2}} \;}}{{(2 - \dfrac{1}{2})}}$
$ \Rightarrow \tan \alpha = \dfrac{1}{{\sqrt 3 }}$
\[ \Rightarrow \alpha = ta{n^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
\[ \Rightarrow \alpha = \dfrac{\pi }{6}\]
$\therefore $ The maximum value of the angle, \[\alpha = \dfrac{\pi }{6}\]\[\;\;\]
Hence the correct option is D.
Note: 1) When a vector is multiplied by a scalar quantity then we get a new vector in the same direction but having a new magnitude. The vector product is distributive and the addition is commutative. The vector has a definite direction. Vectors obey the law of parallelograms of addition.
2) Zero vector is the one that has zero magnitudes and also no specific direction.
3) If two vectors have equal magnitude and are in the same direction, then they are called equal vectors.
Complete step by step solution:
Consider the vector b makes an angle $\theta $ with the negative side of vector a. Then the resultant component in the x-direction is given by
$(a + b)_x$ $ = a - b\cos \theta $
$ \Rightarrow $ $(a + b)_x$ $ = a - \dfrac{a}{2}\cos \theta $ $\left( {\because b = \dfrac{a}{2}} \right)$
$ \Rightarrow $ $(a + b)_x $ = $\dfrac{a}{2}(2 - \cos \theta )$
Similarly, the resultant vector of the y component is given by
$(a + b)_y $ = $b\sin \theta $
$ \Rightarrow $ $(a + b)_y $ = $\dfrac{a}{2}\sin \theta $\[\]$\left( {\because b = \dfrac{a}{2}} \right)$
We know that according to the parallelogram law of vector addition, the angle between the resultant with the first vector is given by,
$\tan \alpha = \left( {\dfrac{{\dfrac{a}{2}\sin \theta }}{{\dfrac{a}{2}\left( {2 + \cos \theta } \right)}}} \right) = \dfrac{{\sin \theta }}{{(2 + \cos \theta )}}$
If α has to be maximum, then $\dfrac{{d\alpha }}{{d\theta }}$ must be equal to zero, thus we have $\dfrac{d}{{d\theta }}\left( {\tan \alpha } \right) = \dfrac{d}{{d\theta }}\left( {\dfrac{{\sin \theta }}{{2 + \cos \theta }}} \right)$
\[ \Rightarrow se{c^2}\alpha \left( {\dfrac{{d\alpha }}{{d\theta }}} \right) = \dfrac{{\sin \theta \left( { - \sin \theta } \right) - \left( {2 + \cos \theta } \right)\left( {\cos \theta } \right)}}{{{{(2 + cos\theta )}^2}}}\]
$
\Rightarrow - si{n^2}\theta - 2\cos \theta - co{s^2}\theta = 0 \\
\Rightarrow 2\cos \theta = - 1 \\
\Rightarrow \theta = \dfrac{{2\pi }}{3} \\
$
Thus for the above value $\theta $, the angle between the resultant and vector a is maximum.
$\therefore $The maximum value of the angle \[\alpha \]is,
$\tan \alpha = \dfrac{{\sin \theta }}{{(2 + \cos \theta )}}$
Substituting the value of $\theta $, we get
\[ \Rightarrow \tan \alpha = \dfrac{{\sin \left( {\dfrac{{2\pi }}{3}} \right)}}{{(2 + \cos \left( {\dfrac{{2\pi }}{3}} \right))}}\] \[(\because \theta = \dfrac{{2\pi }}{3})\]
$ \Rightarrow \tan \alpha = \dfrac{{\;\sqrt {\dfrac{3}{2}} \;}}{{(2 - \dfrac{1}{2})}}$
$ \Rightarrow \tan \alpha = \dfrac{1}{{\sqrt 3 }}$
\[ \Rightarrow \alpha = ta{n^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
\[ \Rightarrow \alpha = \dfrac{\pi }{6}\]
$\therefore $ The maximum value of the angle, \[\alpha = \dfrac{\pi }{6}\]\[\;\;\]
Hence the correct option is D.
Note: 1) When a vector is multiplied by a scalar quantity then we get a new vector in the same direction but having a new magnitude. The vector product is distributive and the addition is commutative. The vector has a definite direction. Vectors obey the law of parallelograms of addition.
2) Zero vector is the one that has zero magnitudes and also no specific direction.
3) If two vectors have equal magnitude and are in the same direction, then they are called equal vectors.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
