
If \[a\] and \[b\] are real numbers such that \[{\left( {2 + \alpha } \right)^4} = a + b\alpha \] , where \[\alpha = \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}\] . Then what is the value of \[\left( {a + b} \right)\]?
A. \[33\]
B. \[57\]
C. 9
D. \[24\]
Answer
164.1k+ views
Hint: First, substitute the value of \[\alpha \] in the given equation and simplify it. Then solve the left-hand side of the equation by converting the complex number into the polar form. After that, convert the polar form into the exponential form of a complex number and simplify it. Again, convert the terms on the left-hand side into the polar form. Substitute the values of the trigonometric angles and solve the equation. In the end, equate the terms of both sides to get the required answer.
Formula used:
The polar form of a complex number \[z = a + ib\] is, \[z = r\left( {cos\theta + isin\theta } \right)\] . where \[r = \sqrt {{a^2} + {b^2}} \].
The exponential form of a complex number \[z = a + ib\] is, \[z = r{e^{i\theta }}\].
Complete step by step solution:
The given equation is \[{\left( {2 + \alpha } \right)^4} = a + b\alpha \], where \[a,b \in R\] and \[\alpha = \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}\].
Let’s substitute the value of \[\alpha \] in the given equation.
\[{\left( {2 + \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Simplify the left-hand side of the above equation.
\[{\left( {\dfrac{{4 - 1 + i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow {\left( {\dfrac{{3 + i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow {\left( {\dfrac{3}{2} + \dfrac{{i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Factor out the common value from the left-hand side.
\[{\left( {\sqrt 3 } \right)^4}{\left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow 9{\left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Now convert the left-hand side of the above equation in the polar form.
\[9{\left( {\cos\dfrac{\pi }{6} + i\sin\dfrac{\pi }{6}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Convert the polar form into the exponential form of a complex number.
\[9{\left( {{e^{i\dfrac{\pi }{6}}}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Apply the exponent property \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] .
\[9\left( {{e^{i\dfrac{{2\pi }}{3}}}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Again, convert the above equation into the polar form.
\[9\left( {\cos\dfrac{{2\pi }}{3} + i\sin\dfrac{{2\pi }}{3}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Substitute the values of the trigonometric angles in the above equation.
\[9\left( {\dfrac{{ - 1}}{2} + i\dfrac{{\sqrt 3 }}{2}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Now simplify the above equation.
\[\dfrac{{ - 9}}{2} + i\dfrac{{9\sqrt 3 }}{2} = a - \dfrac{b}{2} + \dfrac{{ib\sqrt 3 }}{2}\]
Now equate the real part and imaginary part of the above equation.
We get,
\[\dfrac{{ - 9}}{2} = a - \dfrac{b}{2}\] \[.....\left( 1 \right)\]
\[i\dfrac{{9\sqrt 3 }}{2} = \dfrac{{ib\sqrt 3 }}{2}\] \[.....\left( 2 \right)\]
From the equation \[\left( 2 \right)\], we get
\[b = 9\]
Now substitute the value of \[b\] in the equation \[\left( 1 \right)\]
\[\dfrac{{ - 9}}{2} = a - \dfrac{9}{2}\]
\[ \Rightarrow a = \dfrac{9}{2} - \dfrac{9}{2}\]
\[ \Rightarrow a = 0\]
Therefore,
\[a + b = 0 + 9\]
\[ \Rightarrow a + b = 9\]
Hence the correct option is C.
Note: Students often get confused with the different types of a complex number.
Rectangular form: \[z = x + iy\]
Polar form: \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Exponential form: \[z = r{e^{i\theta }}\], where \[{e^{i\theta }} = \cos\theta + i\sin\theta \]
Formula used:
The polar form of a complex number \[z = a + ib\] is, \[z = r\left( {cos\theta + isin\theta } \right)\] . where \[r = \sqrt {{a^2} + {b^2}} \].
The exponential form of a complex number \[z = a + ib\] is, \[z = r{e^{i\theta }}\].
Complete step by step solution:
The given equation is \[{\left( {2 + \alpha } \right)^4} = a + b\alpha \], where \[a,b \in R\] and \[\alpha = \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}\].
Let’s substitute the value of \[\alpha \] in the given equation.
\[{\left( {2 + \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Simplify the left-hand side of the above equation.
\[{\left( {\dfrac{{4 - 1 + i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow {\left( {\dfrac{{3 + i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow {\left( {\dfrac{3}{2} + \dfrac{{i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Factor out the common value from the left-hand side.
\[{\left( {\sqrt 3 } \right)^4}{\left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow 9{\left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Now convert the left-hand side of the above equation in the polar form.
\[9{\left( {\cos\dfrac{\pi }{6} + i\sin\dfrac{\pi }{6}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Convert the polar form into the exponential form of a complex number.
\[9{\left( {{e^{i\dfrac{\pi }{6}}}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Apply the exponent property \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] .
\[9\left( {{e^{i\dfrac{{2\pi }}{3}}}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Again, convert the above equation into the polar form.
\[9\left( {\cos\dfrac{{2\pi }}{3} + i\sin\dfrac{{2\pi }}{3}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Substitute the values of the trigonometric angles in the above equation.
\[9\left( {\dfrac{{ - 1}}{2} + i\dfrac{{\sqrt 3 }}{2}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Now simplify the above equation.
\[\dfrac{{ - 9}}{2} + i\dfrac{{9\sqrt 3 }}{2} = a - \dfrac{b}{2} + \dfrac{{ib\sqrt 3 }}{2}\]
Now equate the real part and imaginary part of the above equation.
We get,
\[\dfrac{{ - 9}}{2} = a - \dfrac{b}{2}\] \[.....\left( 1 \right)\]
\[i\dfrac{{9\sqrt 3 }}{2} = \dfrac{{ib\sqrt 3 }}{2}\] \[.....\left( 2 \right)\]
From the equation \[\left( 2 \right)\], we get
\[b = 9\]
Now substitute the value of \[b\] in the equation \[\left( 1 \right)\]
\[\dfrac{{ - 9}}{2} = a - \dfrac{9}{2}\]
\[ \Rightarrow a = \dfrac{9}{2} - \dfrac{9}{2}\]
\[ \Rightarrow a = 0\]
Therefore,
\[a + b = 0 + 9\]
\[ \Rightarrow a + b = 9\]
Hence the correct option is C.
Note: Students often get confused with the different types of a complex number.
Rectangular form: \[z = x + iy\]
Polar form: \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Exponential form: \[z = r{e^{i\theta }}\], where \[{e^{i\theta }} = \cos\theta + i\sin\theta \]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
