
If \[a\] and \[b\] are real numbers such that \[{\left( {2 + \alpha } \right)^4} = a + b\alpha \] , where \[\alpha = \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}\] . Then what is the value of \[\left( {a + b} \right)\]?
A. \[33\]
B. \[57\]
C. 9
D. \[24\]
Answer
232.8k+ views
Hint: First, substitute the value of \[\alpha \] in the given equation and simplify it. Then solve the left-hand side of the equation by converting the complex number into the polar form. After that, convert the polar form into the exponential form of a complex number and simplify it. Again, convert the terms on the left-hand side into the polar form. Substitute the values of the trigonometric angles and solve the equation. In the end, equate the terms of both sides to get the required answer.
Formula used:
The polar form of a complex number \[z = a + ib\] is, \[z = r\left( {cos\theta + isin\theta } \right)\] . where \[r = \sqrt {{a^2} + {b^2}} \].
The exponential form of a complex number \[z = a + ib\] is, \[z = r{e^{i\theta }}\].
Complete step by step solution:
The given equation is \[{\left( {2 + \alpha } \right)^4} = a + b\alpha \], where \[a,b \in R\] and \[\alpha = \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}\].
Let’s substitute the value of \[\alpha \] in the given equation.
\[{\left( {2 + \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Simplify the left-hand side of the above equation.
\[{\left( {\dfrac{{4 - 1 + i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow {\left( {\dfrac{{3 + i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow {\left( {\dfrac{3}{2} + \dfrac{{i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Factor out the common value from the left-hand side.
\[{\left( {\sqrt 3 } \right)^4}{\left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow 9{\left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Now convert the left-hand side of the above equation in the polar form.
\[9{\left( {\cos\dfrac{\pi }{6} + i\sin\dfrac{\pi }{6}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Convert the polar form into the exponential form of a complex number.
\[9{\left( {{e^{i\dfrac{\pi }{6}}}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Apply the exponent property \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] .
\[9\left( {{e^{i\dfrac{{2\pi }}{3}}}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Again, convert the above equation into the polar form.
\[9\left( {\cos\dfrac{{2\pi }}{3} + i\sin\dfrac{{2\pi }}{3}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Substitute the values of the trigonometric angles in the above equation.
\[9\left( {\dfrac{{ - 1}}{2} + i\dfrac{{\sqrt 3 }}{2}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Now simplify the above equation.
\[\dfrac{{ - 9}}{2} + i\dfrac{{9\sqrt 3 }}{2} = a - \dfrac{b}{2} + \dfrac{{ib\sqrt 3 }}{2}\]
Now equate the real part and imaginary part of the above equation.
We get,
\[\dfrac{{ - 9}}{2} = a - \dfrac{b}{2}\] \[.....\left( 1 \right)\]
\[i\dfrac{{9\sqrt 3 }}{2} = \dfrac{{ib\sqrt 3 }}{2}\] \[.....\left( 2 \right)\]
From the equation \[\left( 2 \right)\], we get
\[b = 9\]
Now substitute the value of \[b\] in the equation \[\left( 1 \right)\]
\[\dfrac{{ - 9}}{2} = a - \dfrac{9}{2}\]
\[ \Rightarrow a = \dfrac{9}{2} - \dfrac{9}{2}\]
\[ \Rightarrow a = 0\]
Therefore,
\[a + b = 0 + 9\]
\[ \Rightarrow a + b = 9\]
Hence the correct option is C.
Note: Students often get confused with the different types of a complex number.
Rectangular form: \[z = x + iy\]
Polar form: \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Exponential form: \[z = r{e^{i\theta }}\], where \[{e^{i\theta }} = \cos\theta + i\sin\theta \]
Formula used:
The polar form of a complex number \[z = a + ib\] is, \[z = r\left( {cos\theta + isin\theta } \right)\] . where \[r = \sqrt {{a^2} + {b^2}} \].
The exponential form of a complex number \[z = a + ib\] is, \[z = r{e^{i\theta }}\].
Complete step by step solution:
The given equation is \[{\left( {2 + \alpha } \right)^4} = a + b\alpha \], where \[a,b \in R\] and \[\alpha = \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}\].
Let’s substitute the value of \[\alpha \] in the given equation.
\[{\left( {2 + \dfrac{{\left( { - 1 + i\sqrt 3 } \right)}}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Simplify the left-hand side of the above equation.
\[{\left( {\dfrac{{4 - 1 + i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow {\left( {\dfrac{{3 + i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow {\left( {\dfrac{3}{2} + \dfrac{{i\sqrt 3 }}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Factor out the common value from the left-hand side.
\[{\left( {\sqrt 3 } \right)^4}{\left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
\[ \Rightarrow 9{\left( {\dfrac{{\sqrt 3 }}{2} + \dfrac{i}{2}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Now convert the left-hand side of the above equation in the polar form.
\[9{\left( {\cos\dfrac{\pi }{6} + i\sin\dfrac{\pi }{6}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Convert the polar form into the exponential form of a complex number.
\[9{\left( {{e^{i\dfrac{\pi }{6}}}} \right)^4} = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Apply the exponent property \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] .
\[9\left( {{e^{i\dfrac{{2\pi }}{3}}}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Again, convert the above equation into the polar form.
\[9\left( {\cos\dfrac{{2\pi }}{3} + i\sin\dfrac{{2\pi }}{3}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Substitute the values of the trigonometric angles in the above equation.
\[9\left( {\dfrac{{ - 1}}{2} + i\dfrac{{\sqrt 3 }}{2}} \right) = a + b\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)\]
Now simplify the above equation.
\[\dfrac{{ - 9}}{2} + i\dfrac{{9\sqrt 3 }}{2} = a - \dfrac{b}{2} + \dfrac{{ib\sqrt 3 }}{2}\]
Now equate the real part and imaginary part of the above equation.
We get,
\[\dfrac{{ - 9}}{2} = a - \dfrac{b}{2}\] \[.....\left( 1 \right)\]
\[i\dfrac{{9\sqrt 3 }}{2} = \dfrac{{ib\sqrt 3 }}{2}\] \[.....\left( 2 \right)\]
From the equation \[\left( 2 \right)\], we get
\[b = 9\]
Now substitute the value of \[b\] in the equation \[\left( 1 \right)\]
\[\dfrac{{ - 9}}{2} = a - \dfrac{9}{2}\]
\[ \Rightarrow a = \dfrac{9}{2} - \dfrac{9}{2}\]
\[ \Rightarrow a = 0\]
Therefore,
\[a + b = 0 + 9\]
\[ \Rightarrow a + b = 9\]
Hence the correct option is C.
Note: Students often get confused with the different types of a complex number.
Rectangular form: \[z = x + iy\]
Polar form: \[z = r\left( {cos\theta + isin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Exponential form: \[z = r{e^{i\theta }}\], where \[{e^{i\theta }} = \cos\theta + i\sin\theta \]
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

