
If \[A + B = {225^ \circ },\] then \[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \]
A. $1$
B. $ - 1$
C. 0
D. $\dfrac{1}{2}$
Answer
233.1k+ views
Hint: In order to solve this type of question, first we will consider the given question. Then, we will simplify it. Next, we will consider the given equation and simplify it by taking tan on both sides. Now, we will apply trigonometric identity for compound angles, substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

