
If \[A + B = {225^ \circ },\] then \[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \]
A. $1$
B. $ - 1$
C. 0
D. $\dfrac{1}{2}$
Answer
164.7k+ views
Hint: In order to solve this type of question, first we will consider the given question. Then, we will simplify it. Next, we will consider the given equation and simplify it by taking tan on both sides. Now, we will apply trigonometric identity for compound angles, substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
