
If \[A + B = {225^ \circ },\] then \[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \]
A. $1$
B. $ - 1$
C. 0
D. $\dfrac{1}{2}$
Answer
216.3k+ views
Hint: In order to solve this type of question, first we will consider the given question. Then, we will simplify it. Next, we will consider the given equation and simplify it by taking tan on both sides. Now, we will apply trigonometric identity for compound angles, substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

