
If \[A + B = {225^ \circ },\] then \[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \]
A. $1$
B. $ - 1$
C. 0
D. $\dfrac{1}{2}$
Answer
162.3k+ views
Hint: In order to solve this type of question, first we will consider the given question. Then, we will simplify it. Next, we will consider the given equation and simplify it by taking tan on both sides. Now, we will apply trigonometric identity for compound angles, substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
