
If \[A + B = {225^ \circ },\] then \[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \]
A. $1$
B. $ - 1$
C. 0
D. $\dfrac{1}{2}$
Answer
232.8k+ views
Hint: In order to solve this type of question, first we will consider the given question. Then, we will simplify it. Next, we will consider the given equation and simplify it by taking tan on both sides. Now, we will apply trigonometric identity for compound angles, substitute the values in it and simplify it to get the correct answer.
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Formula used:
$\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
$\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
$\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Complete step by step solution:
Consider,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}}\]
$ = \left( {\dfrac{{\dfrac{1}{{\tan A}}}}{{1 + \dfrac{1}{{\tan A}}}}} \right) \cdot \left( {\dfrac{{\dfrac{1}{{\tan B}}}}{{1 + \dfrac{1}{{\tan B}}}}} \right)$ $\left[ {\because \cot A = \dfrac{1}{{\tan A}}} \right]$
Solving it,
$ = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \tan B} \right)}}$ ………………..equation$\left( 1 \right)$
We are given,
\[A + B = {225^ \circ }\]
\[B = {225^ \circ } - A\]
Taking $\tan $ on both sides,
\[\tan B = \tan \left( {{{225}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{180}^ \circ } + {{45}^ \circ } - A} \right)\]
\[\tan B = \tan \left( {{{45}^ \circ } - A} \right)\] $\left[ {\because \tan \left( {{{180}^ \circ } + \theta } \right) = \tan \theta } \right]$
Applying trigonometric identity,
$\tan B = \dfrac{{\tan {{45}^ \circ } - \tan A}}{{1 + \tan {{45}^ \circ }\tan A}}$ $\left[ {\because \tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}} \right]$
$\tan B = \dfrac{{1 - \tan A}}{{1 + \tan A}}$ $\left[ {\because \tan {{45}^ \circ } = 1} \right]$
Substituting this value in equation $\left( 1 \right)$,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{{\left( {1 + \tan A} \right)\left( {1 + \left( {\dfrac{{1 - \tan A}}{{1 + \tan A}}} \right)} \right)}}\]
\[ = \dfrac{{\left( {1 + \tan A} \right)}}{{\left( {1 + \tan A} \right)\left( {1 + \tan A + 1 - \tan A} \right)}}\]
On simplifying it,
\[\dfrac{{\cot A}}{{1 + \cot A}} \cdot \dfrac{{\cot B}}{{1 + \cot B}} = \dfrac{1}{2}\]
$\therefore $ The correct option is D.
Note: We can also solve this question by taking cotangent on both sides of the given equation \[A+B={{225}^{0}}\] to find the value of \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\].
\[\cot \left( A+B \right)=\cot {{225}^{0}}\]
Now we know that \[\cot \left( A+B \right)=\frac{\cot A\cot B-1}{\cot A+\cot B}\] and \[\cot {{225}^{0}}=1\] so we will use these in the above equation.
\[\begin{align}
& \cot \left( A+B \right)=\cot {{225}^{0}} \\
& \frac{\cot A\cot B-1}{\cot A+\cot B}=1 \\
& \cot A\cot B-1=\cot A+\cot B \\
& \cot A\cot B=1+\cot A+\cot B.....(i)
\end{align}\]
We will now take \[\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B}\] and find its product.
\[\begin{align}
& =\frac{\cot A}{1+\cot A}\times \frac{\cot B}{1+\cot B} \\
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
\end{align}\]
Substituting equation (i) in the above equation,
\[\begin{align}
& =\frac{\cot A\cot B}{1+\cot B+\cot A+\cot A\cot B} \\
& =\frac{\cot A\cot B}{\cot A\cot B+\cot A\cot B} \\
& =\frac{\cot A\cot B}{2\cot A\cot B} \\
& =\frac{1}{2} \\
\end{align}\]
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

