
If \[81\] is the discriminant of \[2{x^2} + 5x - k = 0\], then the value of \[k\] is
A. \[5\]
B. \[7\]
C. \[ - 7\]
D. \[2\]
Answer
219.6k+ views
Hint: We know that to solve the given equation we need to use the discriminant formula and then substitute the values in the given equation to get the desired result. The discriminant is a factor that helps to find the exact roots of a quadratic equation if the equation is not a perfect square.
Formula Used: We have used the formula of discriminant that is given below
\[\Delta = {b^2} - 4ac\]
Complete step-by-step solution:
We are given an equation that is \[2{x^2} + 5x - k = 0\]
Now, compare the given equation to the standard quadratic equation \[a{x^2} + bx + c = 0\] where the values of a, b and c are 2, 5 and -k, respectively.
Now we apply the formula of discriminant in the given equation, and we get
\[
{b^2} - 4ac = 81 \\
\Rightarrow {\left( 5 \right)^2} - 4 \times 2 \times \left( { - k} \right) = 81 \\
\Rightarrow 25 + 8k = 81 \\
\Rightarrow 8k = 81 - 25
\]
Further Simplifying, we get,
\[
8k = 56 \\
\Rightarrow k = 7
\]
Hence, the value of k is 7, so, option B is correct.
Additional information: A discriminant is a term contained within a radical symbol (square root) of the quadratic formula. In mathematics, the discriminant is used to determine the nature of the roots of a quadratic equation. The discriminant value determines whether the roots of the quadratic equation are real or imaginary, equal or unequal. Similarly, for higher degree polynomials, the discriminant is always a polynomial function of the coefficients.
Note: Many students made miscalculations while substituting the wrong values of a, b, and c in the formula of discriminant so make sure about the formula and compare the values according to the signs of \[a{x^2} + bx + c = 0\] and also solve the question with the help of the formula.
Formula Used: We have used the formula of discriminant that is given below
\[\Delta = {b^2} - 4ac\]
Complete step-by-step solution:
We are given an equation that is \[2{x^2} + 5x - k = 0\]
Now, compare the given equation to the standard quadratic equation \[a{x^2} + bx + c = 0\] where the values of a, b and c are 2, 5 and -k, respectively.
Now we apply the formula of discriminant in the given equation, and we get
\[
{b^2} - 4ac = 81 \\
\Rightarrow {\left( 5 \right)^2} - 4 \times 2 \times \left( { - k} \right) = 81 \\
\Rightarrow 25 + 8k = 81 \\
\Rightarrow 8k = 81 - 25
\]
Further Simplifying, we get,
\[
8k = 56 \\
\Rightarrow k = 7
\]
Hence, the value of k is 7, so, option B is correct.
Additional information: A discriminant is a term contained within a radical symbol (square root) of the quadratic formula. In mathematics, the discriminant is used to determine the nature of the roots of a quadratic equation. The discriminant value determines whether the roots of the quadratic equation are real or imaginary, equal or unequal. Similarly, for higher degree polynomials, the discriminant is always a polynomial function of the coefficients.
Note: Many students made miscalculations while substituting the wrong values of a, b, and c in the formula of discriminant so make sure about the formula and compare the values according to the signs of \[a{x^2} + bx + c = 0\] and also solve the question with the help of the formula.
Recently Updated Pages
The angle of depression of the top and the bottom of class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The side BC of a triangle ABC is bisected at D O is class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

JEE Main Marks vs Percentile vs Rank 2026: Calculate Percentile and Rank Using Marks

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

