
If \[0\le x\le \pi \] and ${{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos }^{2}}x}}=30$, then $x$ is equal
to.
(a) $\dfrac{\pi }{6}$
(b) $\dfrac{\pi }{3}$
(c) $\dfrac{5\pi }{6}$
(d) $\dfrac{2\pi }{3}$
(e) All correct
Answer
214.2k+ views
Since the question contains both ${{\sin }^{2}}x$ and ${{\cos }^{2}}x$ , we will write ${{\cos}^{2}}x=1-{{\sin }^{2}}x$ so that we can get ${{81}^{{{\sin }^{2}}x}}$ in both the terms in left hand side of the equation given in the question. Then substitute ${{81}^{{{\sin }^{2}}x}}=t$ and solve the obtained quadratic equation.
In the question, we are given an equation ${{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos}^{2}}x}}=30.........(1)$.
We have a trigonometric identity,
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x..........\left( 2 \right) \\
\end{align}$
Substituting ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ from equation $\left( 2 \right)$ in equation $\left( 1
\right)$, we get,
${{81}^{{{\sin }^{2}}x}}+{{81}^{1-{{\sin }^{2}}x}}=30...........\left( 3 \right)$
We have a property of exponents,
${{a}^{b-c}}=\dfrac{{{a}^{b}}}{{{a}^{c}}}$, where $a,b,c\in R$.
Using this property in equation $\left( 3 \right)$ with $a=81,b=1$ and $c={{\sin }^{2}}x$, we get,
${{81}^{{{\sin }^{2}}x}}+\dfrac{{{81}^{1}}}{{{81}^{{{\sin }^{2}}x}}}=30...........\left( 4 \right)$
Now, let us assume ${{81}^{{{\sin }^{2}}x}}=t$. Substituting ${{81}^{{{\sin }^{2}}x}}=t$ in equation
$\left( 4 \right)$, we get,
$t+\dfrac{81}{t}=30$
$\begin{align}
& \Rightarrow \dfrac{{{t}^{2}}+81}{t}=30 \\
& \Rightarrow {{t}^{2}}+81=30t \\
& \Rightarrow {{t}^{2}}-30t+81=0 \\
\end{align}$
Now, we have got a quadratic equation which can be easily solved by using the method of splitting the middle term. Solving this quadratic equation,
\[\begin{align}
& {{t}^{2}}-3t-27t+81=0 \\
& \Rightarrow t\left( t-3 \right)-27\left( t-3 \right)=0 \\
& \Rightarrow \left( t-3 \right)\left( t-27 \right)=0 \\
\end{align}\]
$\Rightarrow t=27$ or $t=3.........\left( 5 \right)$
Since we have earlier assumed ${{81}^{{{\sin }^{2}}x}}=t$, we can now again substitute
$t={{81}^{{{\sin }^{2}}x}}$ in equation $\left( 5 \right)$. Substituting $t={{81}^{{{\sin }^{2}}x}}$ in
equation $\left( 5 \right)$, we get,
${{81}^{{{\sin }^{2}}x}}=27$ or ${{81}^{{{\sin }^{2}}x}}=3$
Since, the above two equation contains exponential terms, in order to solve them, we first have to
make their base equal. We know $81={{3}^{4}}$ and $27={{3}^{3}}$. Hence, substituting
$81={{3}^{4}}$ and $27={{3}^{3}}$ in the above equation, we get,
${{\left( {{3}^{4}} \right)}^{{{\sin }^{2}}x}}={{3}^{3}}$ or ${{\left( {{3}^{4}} \right)}^{{{\sin }^{2}}x}}=3$
$\Rightarrow {{3}^{4{{\sin }^{2}}x}}={{3}^{3}}$ or ${{3}^{4}}^{{{\sin }^{2}}x}=3............\left( 6 \right)$
Now, the base of all the exponential terms in the above two equations in equation $\left( 6 \right)$ is the same. So, we can directly equate the powers of the terms on both the sides of equality.
$\Rightarrow 4{{\sin }^{2}}x=3$ or $4{{\sin }^{2}}x=1$
$\Rightarrow {{\sin }^{2}}x=\dfrac{3}{4}$ or ${{\sin }^{2}}x=\dfrac{1}{4}$
$\Rightarrow \sin x=\pm \dfrac{\sqrt{3}}{2}$ or $\sin x=\pm \dfrac{1}{2}.........\left( 7 \right)$
In the question, it is given that \[0\le x\le \pi \]. For this domain, the value of $\sin x$ is positive .
So, we can neglect $\sin x=-\dfrac{\sqrt{3}}{2}$ and $\sin x=-\dfrac{1}{2}$
as the solution of the equation $\left( 7 \right)$.
Removing $\sin x=-\dfrac{\sqrt{3}}{2}$ and $\sin x=-\dfrac{1}{2}$ from equation $\left( 7 \right)$, we
get,
$\sin x=+\dfrac{\sqrt{3}}{2}$ or $\sin x=+\dfrac{1}{2}$
Solving the above equation in the domain \[0\le x\le \pi \], we get,
$x=\dfrac{\pi }{3},\dfrac{2\pi }{3}$ or $x=\dfrac{\pi }{6},\dfrac{5\pi }{6}$.
So, the possible values of $x$ are $\dfrac{\pi }{3},\dfrac{\pi }{6},\dfrac{2\pi }{3},\dfrac{5\pi }{6}$.
Therefore the final answer is option (e).
Note: There is a possibility that one may commit a mistake if he/she does not consider $\dfrac{2\pi}{3}$ and $\dfrac{5\pi }{6}$ as possible solutions of the equation. But as it is mentioned in the question that \[0\le x\le \pi \], we have to consider $\dfrac{2\pi }{3}$ and $\dfrac{5\pi }{6}$ as possible solutions of the equation.
In the question, we are given an equation ${{81}^{{{\sin }^{2}}x}}+{{81}^{{{\cos}^{2}}x}}=30.........(1)$.
We have a trigonometric identity,
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& \Rightarrow {{\cos }^{2}}x=1-{{\sin }^{2}}x..........\left( 2 \right) \\
\end{align}$
Substituting ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ from equation $\left( 2 \right)$ in equation $\left( 1
\right)$, we get,
${{81}^{{{\sin }^{2}}x}}+{{81}^{1-{{\sin }^{2}}x}}=30...........\left( 3 \right)$
We have a property of exponents,
${{a}^{b-c}}=\dfrac{{{a}^{b}}}{{{a}^{c}}}$, where $a,b,c\in R$.
Using this property in equation $\left( 3 \right)$ with $a=81,b=1$ and $c={{\sin }^{2}}x$, we get,
${{81}^{{{\sin }^{2}}x}}+\dfrac{{{81}^{1}}}{{{81}^{{{\sin }^{2}}x}}}=30...........\left( 4 \right)$
Now, let us assume ${{81}^{{{\sin }^{2}}x}}=t$. Substituting ${{81}^{{{\sin }^{2}}x}}=t$ in equation
$\left( 4 \right)$, we get,
$t+\dfrac{81}{t}=30$
$\begin{align}
& \Rightarrow \dfrac{{{t}^{2}}+81}{t}=30 \\
& \Rightarrow {{t}^{2}}+81=30t \\
& \Rightarrow {{t}^{2}}-30t+81=0 \\
\end{align}$
Now, we have got a quadratic equation which can be easily solved by using the method of splitting the middle term. Solving this quadratic equation,
\[\begin{align}
& {{t}^{2}}-3t-27t+81=0 \\
& \Rightarrow t\left( t-3 \right)-27\left( t-3 \right)=0 \\
& \Rightarrow \left( t-3 \right)\left( t-27 \right)=0 \\
\end{align}\]
$\Rightarrow t=27$ or $t=3.........\left( 5 \right)$
Since we have earlier assumed ${{81}^{{{\sin }^{2}}x}}=t$, we can now again substitute
$t={{81}^{{{\sin }^{2}}x}}$ in equation $\left( 5 \right)$. Substituting $t={{81}^{{{\sin }^{2}}x}}$ in
equation $\left( 5 \right)$, we get,
${{81}^{{{\sin }^{2}}x}}=27$ or ${{81}^{{{\sin }^{2}}x}}=3$
Since, the above two equation contains exponential terms, in order to solve them, we first have to
make their base equal. We know $81={{3}^{4}}$ and $27={{3}^{3}}$. Hence, substituting
$81={{3}^{4}}$ and $27={{3}^{3}}$ in the above equation, we get,
${{\left( {{3}^{4}} \right)}^{{{\sin }^{2}}x}}={{3}^{3}}$ or ${{\left( {{3}^{4}} \right)}^{{{\sin }^{2}}x}}=3$
$\Rightarrow {{3}^{4{{\sin }^{2}}x}}={{3}^{3}}$ or ${{3}^{4}}^{{{\sin }^{2}}x}=3............\left( 6 \right)$
Now, the base of all the exponential terms in the above two equations in equation $\left( 6 \right)$ is the same. So, we can directly equate the powers of the terms on both the sides of equality.
$\Rightarrow 4{{\sin }^{2}}x=3$ or $4{{\sin }^{2}}x=1$
$\Rightarrow {{\sin }^{2}}x=\dfrac{3}{4}$ or ${{\sin }^{2}}x=\dfrac{1}{4}$
$\Rightarrow \sin x=\pm \dfrac{\sqrt{3}}{2}$ or $\sin x=\pm \dfrac{1}{2}.........\left( 7 \right)$
In the question, it is given that \[0\le x\le \pi \]. For this domain, the value of $\sin x$ is positive .
So, we can neglect $\sin x=-\dfrac{\sqrt{3}}{2}$ and $\sin x=-\dfrac{1}{2}$
as the solution of the equation $\left( 7 \right)$.
Removing $\sin x=-\dfrac{\sqrt{3}}{2}$ and $\sin x=-\dfrac{1}{2}$ from equation $\left( 7 \right)$, we
get,
$\sin x=+\dfrac{\sqrt{3}}{2}$ or $\sin x=+\dfrac{1}{2}$
Solving the above equation in the domain \[0\le x\le \pi \], we get,
$x=\dfrac{\pi }{3},\dfrac{2\pi }{3}$ or $x=\dfrac{\pi }{6},\dfrac{5\pi }{6}$.
So, the possible values of $x$ are $\dfrac{\pi }{3},\dfrac{\pi }{6},\dfrac{2\pi }{3},\dfrac{5\pi }{6}$.
Therefore the final answer is option (e).
Note: There is a possibility that one may commit a mistake if he/she does not consider $\dfrac{2\pi}{3}$ and $\dfrac{5\pi }{6}$ as possible solutions of the equation. But as it is mentioned in the question that \[0\le x\le \pi \], we have to consider $\dfrac{2\pi }{3}$ and $\dfrac{5\pi }{6}$ as possible solutions of the equation.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

