
If $0 < r < s \leqslant n$and ${}^n{P_r} = {}^n{P_s}$, then the value of $r + s$ is:
$\left( A \right).$ 1
$\left( B \right).$ 2
$\left( C \right).$ $2n - 1$
$\left( D \right).$ $2n - 2$
Answer
232.8k+ views
Hint: Use formulas of permutation to find the value.
We know that:
${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}{\text{ }}\left( {{\text{Permutation Formula}}} \right)$
Given that: ${}^n{P_r} = {}^n{P_s}$
$
\therefore \dfrac{{n!}}{{\left( {n - r} \right)!}} = \dfrac{{n!}}{{\left( {n - s} \right)!}} \\
\left( {n - r} \right)! = \left( {n - s} \right)! \\
$
Also, $r < s{\text{ }}\left( {{\text{Given}}} \right)$
$\therefore - r > - s$
Adding $n$both sides, we get
$\left( {n - r} \right) > \left( {n - s} \right)$
We know that two different factorials having the same value are 0 and 1, both having factorial equal to 1.
$\therefore n - r = 1$and $n - s = 0$
$
\Rightarrow r = n - 1,s = n \\
\therefore r + s = n + n - 1 \\
r + s = 2n - 1 \\
$
Hence, the correct option is C.
Note: Whenever you see permutation, always try to expand the term by using a permutation formula which makes calculation easy.
We know that:
${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}{\text{ }}\left( {{\text{Permutation Formula}}} \right)$
Given that: ${}^n{P_r} = {}^n{P_s}$
$
\therefore \dfrac{{n!}}{{\left( {n - r} \right)!}} = \dfrac{{n!}}{{\left( {n - s} \right)!}} \\
\left( {n - r} \right)! = \left( {n - s} \right)! \\
$
Also, $r < s{\text{ }}\left( {{\text{Given}}} \right)$
$\therefore - r > - s$
Adding $n$both sides, we get
$\left( {n - r} \right) > \left( {n - s} \right)$
We know that two different factorials having the same value are 0 and 1, both having factorial equal to 1.
$\therefore n - r = 1$and $n - s = 0$
$
\Rightarrow r = n - 1,s = n \\
\therefore r + s = n + n - 1 \\
r + s = 2n - 1 \\
$
Hence, the correct option is C.
Note: Whenever you see permutation, always try to expand the term by using a permutation formula which makes calculation easy.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

