
Heat is flowing through two cylindrical rods of the same material. The diameters of the rods are in the ratio of 1:2 and their lengths are in the ratio of 2:1. If the temperature difference between their ends is the same, then find the ratio of amounts of heat conducted through them per unit of time.
A. 1:1
B. 2:1
C. 1:4
D. 1:8
Answer
220.5k+ views
Hint:>In order to solve this problem we need to understand the amount of heat flow in the conductor. It is defined as the transfer of heat down a temperature gradient between two bodies in close physical contact.
Formula Used:
To find the rate of heat flow the formula is,
\[\dfrac{{dQ}}{{dt}} = - \dfrac{{KAT}}{L}\]
Where, A is cross sectional area, \[T\] is temperature and l is length of the cylinder.
Complete step by step solution:
Here, the heat is flowing through two cylindrical rods of the same material. The diameters of the rods are in the ratio of 1:2 and their lengths are in the ratio of 2:1. If the temperature difference between their ends is the same, then we need to find the ratio of amounts of heat conducted through them per unit of time. The rate of flow of heat is,
\[\dfrac{{dQ}}{{dt}} = - \dfrac{{KAT}}{L}\]
Since we have two cylindrical rods,
\[\dfrac{{d{Q_1}}}{{dt}} = - \dfrac{{K{A_1}T}}{{{L_1}}}\] and \[\dfrac{{d{Q_2}}}{{dt}} = - \dfrac{{K{A_2}T}}{{{L_2}}}\]
Now, if we take the ratios of these two, we get,
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\dfrac{{K{A_1}T}}{{{L_1}}}}}{{\dfrac{{K{A_2}T}}{{{L_2}}}}} \\ \]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\dfrac{{{A_1}}}{{{L_1}}}}}{{\dfrac{{{A_2}}}{{{L_2}}}}} \\ \]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{{A_1}}}{{{L_1}}} \times \dfrac{{{L_2}}}{{{A_2}}} \\ \]
We know that area, \[A = \pi {r^2}\]
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\pi {r_1}^2}}{{{L_1}}} \times \dfrac{{{L_2}}}{{\pi {r_2}^2}}\]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{{r_1}^2}}{{{r_2}^2}} \times \dfrac{{{L_2}}}{{{L_1}}}\]………….. (1)
Here, ratio of diameters is 1:2 that is,
\[\dfrac{{{d_1}}}{{{d_2}}} = \dfrac{1}{2}\] and \[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{1}{2}\]
The lengths have the ratio of,
\[\dfrac{{{l_1}}}{{{l_2}}} = \dfrac{2}{1}\]
Then, equation (1) will become,
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{1}{4} \times \dfrac{1}{2} \\ \]
\[\therefore \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{1}{8} \\ \]
That is, \[\dfrac{{d{Q_1}}}{{dt}}:\dfrac{{d{Q_2}}}{{dt}} = 1:8\]
Therefore, the ratio of amounts of heat conducted through them per unit of time is 1:8
Hence, option D is the correct answer.
Note: The rate of conductive heat transfer depends on temperature gradient between the two bodies, the area of contact and the length of the conductor.
Formula Used:
To find the rate of heat flow the formula is,
\[\dfrac{{dQ}}{{dt}} = - \dfrac{{KAT}}{L}\]
Where, A is cross sectional area, \[T\] is temperature and l is length of the cylinder.
Complete step by step solution:
Here, the heat is flowing through two cylindrical rods of the same material. The diameters of the rods are in the ratio of 1:2 and their lengths are in the ratio of 2:1. If the temperature difference between their ends is the same, then we need to find the ratio of amounts of heat conducted through them per unit of time. The rate of flow of heat is,
\[\dfrac{{dQ}}{{dt}} = - \dfrac{{KAT}}{L}\]
Since we have two cylindrical rods,
\[\dfrac{{d{Q_1}}}{{dt}} = - \dfrac{{K{A_1}T}}{{{L_1}}}\] and \[\dfrac{{d{Q_2}}}{{dt}} = - \dfrac{{K{A_2}T}}{{{L_2}}}\]
Now, if we take the ratios of these two, we get,
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\dfrac{{K{A_1}T}}{{{L_1}}}}}{{\dfrac{{K{A_2}T}}{{{L_2}}}}} \\ \]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\dfrac{{{A_1}}}{{{L_1}}}}}{{\dfrac{{{A_2}}}{{{L_2}}}}} \\ \]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{{A_1}}}{{{L_1}}} \times \dfrac{{{L_2}}}{{{A_2}}} \\ \]
We know that area, \[A = \pi {r^2}\]
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\pi {r_1}^2}}{{{L_1}}} \times \dfrac{{{L_2}}}{{\pi {r_2}^2}}\]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{{r_1}^2}}{{{r_2}^2}} \times \dfrac{{{L_2}}}{{{L_1}}}\]………….. (1)
Here, ratio of diameters is 1:2 that is,
\[\dfrac{{{d_1}}}{{{d_2}}} = \dfrac{1}{2}\] and \[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{1}{2}\]
The lengths have the ratio of,
\[\dfrac{{{l_1}}}{{{l_2}}} = \dfrac{2}{1}\]
Then, equation (1) will become,
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{1}{4} \times \dfrac{1}{2} \\ \]
\[\therefore \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{1}{8} \\ \]
That is, \[\dfrac{{d{Q_1}}}{{dt}}:\dfrac{{d{Q_2}}}{{dt}} = 1:8\]
Therefore, the ratio of amounts of heat conducted through them per unit of time is 1:8
Hence, option D is the correct answer.
Note: The rate of conductive heat transfer depends on temperature gradient between the two bodies, the area of contact and the length of the conductor.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

