
What will happen, when the velocity of a body is doubled?
(A) kinetic energy is doubled
(B) acceleration is doubled
(C) momentum is doubled
(D) potential energy is doubled
Answer
520.5k+ views
Hint: Velocity is defined as the rate of change of position of an object with respect to time. And the velocity is also defined as the amount of distance travelled by an object in a given amount of time. By using the velocity formula, the solution can be determined.
Complete step by step solution
1. Relation between velocity and kinetic energy
$KE = \dfrac{1}{2} \times m{v^2}$
Where, $KE$ is the kinetic energy, $m$ is the mass, $v$ is the velocity.
$KE = \dfrac{1}{2} \times m{v^2}$
If the velocity is doubled,
$KE = \dfrac{1}{2} \times m{\left( {2v} \right)^2}$
Squaring the terms inside the bracket,
$KE = \dfrac{1}{2} \times m\left( {4{v^2}} \right)$
By arranging the above equation,
$KE = 4 \times \left( {\dfrac{1}{2} \times m{v^2}} \right)$
By this equation, we clearly understand that the velocity is doubled then the kinetic energy becomes 4 times.
2. Relation between velocity and acceleration
Acceleration is the rate of change of velocity with respect to time. If the velocity is doubled, then it is due to acceleration only. In other words, by changing the acceleration, the velocity is doubled. So, if the velocity is doubled, the acceleration will not double.
3. Relation between velocity and momentum
By Linear momentum equation,
$p = m \times v$
Where, $p$ is the momentum, $m$ is the mass, $v$ is the velocity.
$p = m \times v$
As the velocity is doubled,
$p = m \times \left( {2v} \right)$
By arranging the above equation,
$p = 2\left( {mv} \right)$
From the above equation, it is clear that the velocity is doubled then the momentum also doubled.
4.Relation between velocity and potential energy:
Actually, there is no relationship between velocity and potential energy. If the potential energy is changed to kinetic energy, then there is a relation between velocity and kinetic energy.
Hence, the option (C) is correct.
Note: The velocity of the object is doubled by changing the acceleration only. If the velocity is doubled its kinetic energy is multiplied by four times. And there is no relationship between the velocity and potential energy. So, if the velocity is doubled, momentum also doubles.
Complete step by step solution
1. Relation between velocity and kinetic energy
$KE = \dfrac{1}{2} \times m{v^2}$
Where, $KE$ is the kinetic energy, $m$ is the mass, $v$ is the velocity.
$KE = \dfrac{1}{2} \times m{v^2}$
If the velocity is doubled,
$KE = \dfrac{1}{2} \times m{\left( {2v} \right)^2}$
Squaring the terms inside the bracket,
$KE = \dfrac{1}{2} \times m\left( {4{v^2}} \right)$
By arranging the above equation,
$KE = 4 \times \left( {\dfrac{1}{2} \times m{v^2}} \right)$
By this equation, we clearly understand that the velocity is doubled then the kinetic energy becomes 4 times.
2. Relation between velocity and acceleration
Acceleration is the rate of change of velocity with respect to time. If the velocity is doubled, then it is due to acceleration only. In other words, by changing the acceleration, the velocity is doubled. So, if the velocity is doubled, the acceleration will not double.
3. Relation between velocity and momentum
By Linear momentum equation,
$p = m \times v$
Where, $p$ is the momentum, $m$ is the mass, $v$ is the velocity.
$p = m \times v$
As the velocity is doubled,
$p = m \times \left( {2v} \right)$
By arranging the above equation,
$p = 2\left( {mv} \right)$
From the above equation, it is clear that the velocity is doubled then the momentum also doubled.
4.Relation between velocity and potential energy:
Actually, there is no relationship between velocity and potential energy. If the potential energy is changed to kinetic energy, then there is a relation between velocity and kinetic energy.
Hence, the option (C) is correct.
Note: The velocity of the object is doubled by changing the acceleration only. If the velocity is doubled its kinetic energy is multiplied by four times. And there is no relationship between the velocity and potential energy. So, if the velocity is doubled, momentum also doubles.
Recently Updated Pages
Graphical Methods of Vector Addition Explained Simply

Geostationary vs Geosynchronous Satellites: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

Fusion Reaction in the Sun Explained: Simple Guide for Students

Functional Equations Explained: Key Concepts & Practice

Froth Flotation Principle and Process Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

