
${H_3}B{O_3}$ is a:
(A) Monobasic and Lewis acid
(B) Monobasic and Bronsted acid
(C) Tribasic and Lewis acid
(D) Tribasic and Lewis acid
Answer
221.1k+ views
Hint: Basicity of an acid depends upon the number of protons it can give upon its dissolution in an aqueous medium. Boric acid contains three –OH groups in its structure.
Complete step by step solution:
Let’s see which type of acid ${H_3}B{O_3}$ (Boric acid) is.
-Basicity of the acids is the number of protons an acid can give upon dissociation in an aqueous solution. So, if an acid can give one proton upon dissociation in aqueous solution, then the acid is said to be monoprotic. Thus, a diprotic acid will give two protons upon dissociation in aqueous solution.
-The chemical structure of boric acid and its reaction in an aqueous medium can be given as

-Here, we can say that though it has three protons, it will not act as a proton donor. It will react with water molecules to form ${[B{(OH)_4}]^ - }$ and will give one proton. So, in this way, it will act as an acid.
-Here, we can see that one molecule of boric acid gives one proton. So, this acid can be considered as a monoprotic acid.
-Bronsted acid is an acid which is capable of donating a proton from its molecule. Boric acid is not able to donate the proton. So, it is not a Bronsted acid.
-Lewis acid is an acid that can accept electron pairs from the base. Here Boric acid can accept the electron pair from water molecules as shown in the reaction. Thus, Boric acid is a Lewis acid.
So, we can conclude that Boric acid is a monoprotic and Lewis acid.
Therefore, the correct answer is (A).
Note: The most common mistake we make here is that we consider Boric acid as a triprotic acid. Actually, it is a Lewis acid also and so that it will form a complex ${[B{(OH)_4}]^ - }$ with water. As this complex is formed, it is not able to donate three protons and actually, it is able to donate only one proton.
Complete step by step solution:
Let’s see which type of acid ${H_3}B{O_3}$ (Boric acid) is.
-Basicity of the acids is the number of protons an acid can give upon dissociation in an aqueous solution. So, if an acid can give one proton upon dissociation in aqueous solution, then the acid is said to be monoprotic. Thus, a diprotic acid will give two protons upon dissociation in aqueous solution.
-The chemical structure of boric acid and its reaction in an aqueous medium can be given as

-Here, we can say that though it has three protons, it will not act as a proton donor. It will react with water molecules to form ${[B{(OH)_4}]^ - }$ and will give one proton. So, in this way, it will act as an acid.
-Here, we can see that one molecule of boric acid gives one proton. So, this acid can be considered as a monoprotic acid.
-Bronsted acid is an acid which is capable of donating a proton from its molecule. Boric acid is not able to donate the proton. So, it is not a Bronsted acid.
-Lewis acid is an acid that can accept electron pairs from the base. Here Boric acid can accept the electron pair from water molecules as shown in the reaction. Thus, Boric acid is a Lewis acid.
So, we can conclude that Boric acid is a monoprotic and Lewis acid.
Therefore, the correct answer is (A).
Note: The most common mistake we make here is that we consider Boric acid as a triprotic acid. Actually, it is a Lewis acid also and so that it will form a complex ${[B{(OH)_4}]^ - }$ with water. As this complex is formed, it is not able to donate three protons and actually, it is able to donate only one proton.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

