
Given that the inverse trigonometric functions take principal values only. Find the number of real values of \[x\] which satisfy \[{\sin ^{ - 1}}\left( {\dfrac{{3x}}{5}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{4x}}{5}} \right) = {\sin ^{ - 1}}x\].
A. 1
B. 2
C. 3
D. 0
Answer
162.3k+ views
Hint: First we will apply the \[{\sin ^{ - 1}}a + {\sin ^{ - 1}}b\] formula to the left side and apply an sine function to remove \[{\sin ^{ - 1}}\] from both sides. Then solve the equation to find the number of solutions of \[x\].
Formula used:
\[{\sin ^{ - 1}}a + {\sin ^{ - 1}}b = {\sin ^{ - 1}}\left( {a\sqrt {1 - {a^2}} + b\sqrt {1 - {a^2}} } \right)\]
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\]
Complete step by step solution:
Given expression is
\[{\sin ^{ - 1}}\left( {\dfrac{{3x}}{5}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{4x}}{5}} \right) = {\sin ^{ - 1}}x\]
Now apply the sum of \[{\sin ^{ - 1}}\].
\[ \Rightarrow {\sin ^{ - 1}}\left( {\dfrac{{3x}}{5}\sqrt {1 - {{\left( {\dfrac{{4x}}{5}} \right)}^2}} + \dfrac{{4x}}{5}\sqrt {1 - {{\left( {\dfrac{{3x}}{5}} \right)}^2}} } \right) = {\sin ^{ - 1}}x\]
Simplify the above equation
\[ \Rightarrow {\sin ^{ - 1}}\left( {\dfrac{{3x}}{5}\sqrt {1 - \dfrac{{16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {1 - \dfrac{{9{x^2}}}{{25}}} } \right) = {\sin ^{ - 1}}x\]
Now take \[\sin \] both sides
\[ \Rightarrow \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{3x}}{5}\sqrt {1 - \dfrac{{16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {1 - \dfrac{{9{x^2}}}{{25}}} } \right)} \right] = \sin \left[ {{{\sin }^{ - 1}}x} \right]\]
Apply the formula \[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\]
\[ \Rightarrow \dfrac{{3x}}{5}\sqrt {1 - \dfrac{{16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {1 - \dfrac{{9{x^2}}}{{25}}} = x\]
Simplify the expression under the square root.
\[ \Rightarrow \dfrac{{3x}}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} = x\]
Subtract \[x\] from both sides of equation
\[ \Rightarrow \dfrac{{3x}}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} - x = 0\]
Take common \[x\]
\[ \Rightarrow x\left( {\dfrac{3}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} + \dfrac{4}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} - 1} \right) = 0\]
Equate each factor by zero
Either \[x = 0\]
Or, \[\dfrac{3}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} + \dfrac{4}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} - 1 = 0\]
Rewrite the above equation
\[ \Rightarrow \dfrac{3}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} = 1 - \dfrac{4}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} \]
\[ \Rightarrow \dfrac{3}{{25}}\sqrt {25 - 16{x^2}} = 1 - \dfrac{4}{{25}}\sqrt {25 - 9{x^2}} \]
\[ \Rightarrow \dfrac{3}{{25}}\sqrt {25 - 16{x^2}} = \dfrac{{25 - 4\sqrt {25 - 9{x^2}} }}{{25}}\]
Cancel out of \[\dfrac{1}{{25}}\] from both sides
\[ \Rightarrow 3\sqrt {25 - 16{x^2}} = 25 - 4\sqrt {25 - 9{x^2}} \]
Raise power 2 both sides
\[ \Rightarrow {\left( {3\sqrt {25 - 16{x^2}} } \right)^2} = {\left( {25 - 4\sqrt {25 - 9{x^2}} } \right)^2}\]
Apply algebraical identity to simplify
\[ \Rightarrow 9\left( {25 - 16{x^2}} \right) = {25^2} + {\left( {4\sqrt {25 - 9{x^2}} } \right)^2} - 2 \cdot 25 \cdot \left( {4\sqrt {25 - 9{x^2}} } \right)\]
\[ \Rightarrow 225 - 144{x^2} = 625 + 16 \cdot \left( {25 - 9{x^2}} \right) - 200\sqrt {25 - 9{x^2}} \]
\[ \Rightarrow 225 - 144{x^2} = 625 + 400 - 144{x^2} - 200\sqrt {25 - 9{x^2}} \]
\[ \Rightarrow 225 - 144{x^2} = 1025 - 144{x^2} - 200\sqrt {25 - 9{x^2}} \]
Rewrite the equation such that all radical part should be one side
\[ \Rightarrow 225 - 144{x^2} - 1025 + 144{x^2} = - 200\sqrt {25 - 9{x^2}} \]
\[ \Rightarrow - 800 = - 200\sqrt {25 - 9{x^2}} \]
Divide both sides -200
\[ \Rightarrow 4 = \sqrt {25 - 9{x^2}} \]
Take square both sides of the equation
\[ \Rightarrow {4^2} = {\left( {\sqrt {25 - 9{x^2}} } \right)^2}\]
\[ \Rightarrow 16 = 25 - 9{x^2}\]
Subtract 25 from both sides
\[ \Rightarrow 16 - 25 = 25 - 9{x^2} - 25\]
\[ \Rightarrow - 9 = - 9{x^2}\]
Divide both sides by -9
\[ \Rightarrow 1 = {x^2}\]
\[ \Rightarrow x = \pm 1\]
The solution of \[x\] are 0, 1, -1.
The number of solutions of \[x\] are 3.
Hence option C is the correct option.
Note: Students often confused \[{\sin ^{ - 1}}x\] with \[{\left( {\sin x} \right)^{ - 1}}\]. In fact \[{\left( {\sin x} \right)^{ - 1}} = \dfrac{1}{{\sin x}}\] and similar to other function. But \[{\sin ^{ - 1}}x\] is a function.
Inverse of a function can be written as \[\arcsin \], \[\arccos \], \[\arctan \] etc.
Formula used:
\[{\sin ^{ - 1}}a + {\sin ^{ - 1}}b = {\sin ^{ - 1}}\left( {a\sqrt {1 - {a^2}} + b\sqrt {1 - {a^2}} } \right)\]
\[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\]
Complete step by step solution:
Given expression is
\[{\sin ^{ - 1}}\left( {\dfrac{{3x}}{5}} \right) + {\sin ^{ - 1}}\left( {\dfrac{{4x}}{5}} \right) = {\sin ^{ - 1}}x\]
Now apply the sum of \[{\sin ^{ - 1}}\].
\[ \Rightarrow {\sin ^{ - 1}}\left( {\dfrac{{3x}}{5}\sqrt {1 - {{\left( {\dfrac{{4x}}{5}} \right)}^2}} + \dfrac{{4x}}{5}\sqrt {1 - {{\left( {\dfrac{{3x}}{5}} \right)}^2}} } \right) = {\sin ^{ - 1}}x\]
Simplify the above equation
\[ \Rightarrow {\sin ^{ - 1}}\left( {\dfrac{{3x}}{5}\sqrt {1 - \dfrac{{16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {1 - \dfrac{{9{x^2}}}{{25}}} } \right) = {\sin ^{ - 1}}x\]
Now take \[\sin \] both sides
\[ \Rightarrow \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{3x}}{5}\sqrt {1 - \dfrac{{16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {1 - \dfrac{{9{x^2}}}{{25}}} } \right)} \right] = \sin \left[ {{{\sin }^{ - 1}}x} \right]\]
Apply the formula \[\sin \left( {{{\sin }^{ - 1}}x} \right) = x\]
\[ \Rightarrow \dfrac{{3x}}{5}\sqrt {1 - \dfrac{{16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {1 - \dfrac{{9{x^2}}}{{25}}} = x\]
Simplify the expression under the square root.
\[ \Rightarrow \dfrac{{3x}}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} = x\]
Subtract \[x\] from both sides of equation
\[ \Rightarrow \dfrac{{3x}}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} + \dfrac{{4x}}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} - x = 0\]
Take common \[x\]
\[ \Rightarrow x\left( {\dfrac{3}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} + \dfrac{4}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} - 1} \right) = 0\]
Equate each factor by zero
Either \[x = 0\]
Or, \[\dfrac{3}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} + \dfrac{4}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} - 1 = 0\]
Rewrite the above equation
\[ \Rightarrow \dfrac{3}{5}\sqrt {\dfrac{{25 - 16{x^2}}}{{25}}} = 1 - \dfrac{4}{5}\sqrt {\dfrac{{25 - 9{x^2}}}{{25}}} \]
\[ \Rightarrow \dfrac{3}{{25}}\sqrt {25 - 16{x^2}} = 1 - \dfrac{4}{{25}}\sqrt {25 - 9{x^2}} \]
\[ \Rightarrow \dfrac{3}{{25}}\sqrt {25 - 16{x^2}} = \dfrac{{25 - 4\sqrt {25 - 9{x^2}} }}{{25}}\]
Cancel out of \[\dfrac{1}{{25}}\] from both sides
\[ \Rightarrow 3\sqrt {25 - 16{x^2}} = 25 - 4\sqrt {25 - 9{x^2}} \]
Raise power 2 both sides
\[ \Rightarrow {\left( {3\sqrt {25 - 16{x^2}} } \right)^2} = {\left( {25 - 4\sqrt {25 - 9{x^2}} } \right)^2}\]
Apply algebraical identity to simplify
\[ \Rightarrow 9\left( {25 - 16{x^2}} \right) = {25^2} + {\left( {4\sqrt {25 - 9{x^2}} } \right)^2} - 2 \cdot 25 \cdot \left( {4\sqrt {25 - 9{x^2}} } \right)\]
\[ \Rightarrow 225 - 144{x^2} = 625 + 16 \cdot \left( {25 - 9{x^2}} \right) - 200\sqrt {25 - 9{x^2}} \]
\[ \Rightarrow 225 - 144{x^2} = 625 + 400 - 144{x^2} - 200\sqrt {25 - 9{x^2}} \]
\[ \Rightarrow 225 - 144{x^2} = 1025 - 144{x^2} - 200\sqrt {25 - 9{x^2}} \]
Rewrite the equation such that all radical part should be one side
\[ \Rightarrow 225 - 144{x^2} - 1025 + 144{x^2} = - 200\sqrt {25 - 9{x^2}} \]
\[ \Rightarrow - 800 = - 200\sqrt {25 - 9{x^2}} \]
Divide both sides -200
\[ \Rightarrow 4 = \sqrt {25 - 9{x^2}} \]
Take square both sides of the equation
\[ \Rightarrow {4^2} = {\left( {\sqrt {25 - 9{x^2}} } \right)^2}\]
\[ \Rightarrow 16 = 25 - 9{x^2}\]
Subtract 25 from both sides
\[ \Rightarrow 16 - 25 = 25 - 9{x^2} - 25\]
\[ \Rightarrow - 9 = - 9{x^2}\]
Divide both sides by -9
\[ \Rightarrow 1 = {x^2}\]
\[ \Rightarrow x = \pm 1\]
The solution of \[x\] are 0, 1, -1.
The number of solutions of \[x\] are 3.
Hence option C is the correct option.
Note: Students often confused \[{\sin ^{ - 1}}x\] with \[{\left( {\sin x} \right)^{ - 1}}\]. In fact \[{\left( {\sin x} \right)^{ - 1}} = \dfrac{1}{{\sin x}}\] and similar to other function. But \[{\sin ^{ - 1}}x\] is a function.
Inverse of a function can be written as \[\arcsin \], \[\arccos \], \[\arctan \] etc.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
