
Given \[f'\left( x \right) = \dfrac{{\cos x}}{x}\], \[f\left( {\dfrac{\pi }{2}} \right) = a\], and \[f\left( {\dfrac{{3\pi }}{2}} \right) = b\], find the value of \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\].
Answer
168.6k+ views
Hint:
Here, we need to find the value of the definite integral. We will integrate the given function by parts. Then, we will simplify the expression using the given values. We will again substitute the limits into the expressions and simplify the expression to obtain the required value of the integral.
Formula Used: Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Complete step by step solution:
We will integrate the given definite integral using integration by parts.
Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Rewriting the given integral, we get
\[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right) \times 1} dx\]
Let \[u\] be \[f\left( x \right)\] and \[v\] be \[1\].
Therefore, by integrating \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\] by parts, we get
\[\begin{array}{l}\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} \times 1dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}\]
We know that the derivative of the function \[f\left( x \right)\] is \[f'\left( x \right)\].
Also, we know that the integral of a constant \[\int {\left( 1 \right)} dx\] is \[x\].
Therefore, we can simplify the integral as
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {f'\left( x \right) \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\]
Substitute \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] in the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {\dfrac{{\cos x}}{x} \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \int {\cos x} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}\]
Integrating the function \[\cos x\], we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \sin x} \right]} \right|_{\pi /2}^{3\pi /2}\]
Now, we will substitute the limits into the expressions.
Therefore, we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \sin \dfrac{{3\pi }}{2}} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - \sin \dfrac{\pi }{2}} \right)\]
We know that \[\sin \dfrac{\pi }{2} = 1\] and \[\sin \dfrac{{3\pi }}{2} = - 1\].
Thus, the integral becomes
\[\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \left( { - 1} \right)} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1 - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 1\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 2\end{array}\]
Substituting \[f\left( {\dfrac{\pi }{2}} \right) = a\] and \[f\left( {\dfrac{{3\pi }}{2}} \right) = b\], we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}b - \dfrac{\pi }{2}a + 2\]
Taking \[\dfrac{\pi }{2}\] common, we get
\[\therefore \int\limits_{\pi /2}^{3\pi /2}{f\left( x \right)}dx=\dfrac{\pi }{2}\left( 3b-a \right)+2\]
Therefore, the value of the definite integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\] is \[\dfrac{\pi }{2}\left( {3b - a} \right) + 2\].
Note:
We have used integration by parts to simplify the integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\]. A common mistake we can make is to first integrate \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] to find \[f\left( x \right)\], and then substitute it into the integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\]. We will avoid doing this because \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] cannot be integrated using any elementary functions (it can be integrated in terms of infinite series, using Taylor series expansion of \[\cos x\]).
Here, we need to find the value of the definite integral. We will integrate the given function by parts. Then, we will simplify the expression using the given values. We will again substitute the limits into the expressions and simplify the expression to obtain the required value of the integral.
Formula Used: Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Complete step by step solution:
We will integrate the given definite integral using integration by parts.
Using integration by parts, the integral of the product of two differentiable functions of \[x\] can be written as \[\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} \], where \[u\] and \[v\] are the differentiable functions of \[x\].
Rewriting the given integral, we get
\[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right) \times 1} dx\]
Let \[u\] be \[f\left( x \right)\] and \[v\] be \[1\].
Therefore, by integrating \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\] by parts, we get
\[\begin{array}{l}\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} \times 1dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)\int {\left( 1 \right)} dx - \int {\left( {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} \times \int {\left( 1 \right)} dx} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}\]
We know that the derivative of the function \[f\left( x \right)\] is \[f'\left( x \right)\].
Also, we know that the integral of a constant \[\int {\left( 1 \right)} dx\] is \[x\].
Therefore, we can simplify the integral as
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {f'\left( x \right) \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\]
Substitute \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] in the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {f\left( x \right)x - \int {\left( {\dfrac{{\cos x}}{x} \times x} \right)} dx} \right]} \right|_{\pi /2}^{3\pi /2}\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \int {\cos x} dx} \right]} \right|_{\pi /2}^{3\pi /2}\end{array}\]
Integrating the function \[\cos x\], we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left. {\left[ {xf\left( x \right) - \sin x} \right]} \right|_{\pi /2}^{3\pi /2}\]
Now, we will substitute the limits into the expressions.
Therefore, we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \sin \dfrac{{3\pi }}{2}} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - \sin \dfrac{\pi }{2}} \right)\]
We know that \[\sin \dfrac{\pi }{2} = 1\] and \[\sin \dfrac{{3\pi }}{2} = - 1\].
Thus, the integral becomes
\[\begin{array}{l} \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \left( { - 1} \right)} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \left( {\dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1} \right) - \left( {\dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) - 1} \right)\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) + 1 - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 1\\ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}f\left( {\dfrac{{3\pi }}{2}} \right) - \dfrac{\pi }{2}f\left( {\dfrac{\pi }{2}} \right) + 2\end{array}\]
Substituting \[f\left( {\dfrac{\pi }{2}} \right) = a\] and \[f\left( {\dfrac{{3\pi }}{2}} \right) = b\], we get
\[ \Rightarrow \int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx = \dfrac{{3\pi }}{2}b - \dfrac{\pi }{2}a + 2\]
Taking \[\dfrac{\pi }{2}\] common, we get
\[\therefore \int\limits_{\pi /2}^{3\pi /2}{f\left( x \right)}dx=\dfrac{\pi }{2}\left( 3b-a \right)+2\]
Therefore, the value of the definite integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\] is \[\dfrac{\pi }{2}\left( {3b - a} \right) + 2\].
Note:
We have used integration by parts to simplify the integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\]. A common mistake we can make is to first integrate \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] to find \[f\left( x \right)\], and then substitute it into the integral \[\int\limits_{\pi /2}^{3\pi /2} {f\left( x \right)} dx\]. We will avoid doing this because \[f'\left( x \right) = \dfrac{{\cos x}}{x}\] cannot be integrated using any elementary functions (it can be integrated in terms of infinite series, using Taylor series expansion of \[\cos x\]).
Recently Updated Pages
Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Difference Between Orbit and Orbital in Chemistry Explained (With Table & Diagram)

Difference Between Intensive and Extensive Properties in Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Combination of Capacitors - In Parallel and Series for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE
