
Given \[{a^x} = {b^y} = {c^z} = {d^u}\] and \[a,b,c,d\] are in G.P., then \[x,y,z,u\] are in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
163.8k+ views
Hint:
We begin by remembering that a, b, c and d are in G.P (Geometric Progression), and assuming \[b = ar,c = a{r^2},d = a{r^3}\] and proceed by taking logarithms for the stated information to solve further. Ad we equate the logarithmic equation to k and then solve each term with respect to k to determine the required progression.
Formula used:
if a, b, c and d are in G.P (Geometric Progression), and assuming
\[b = ar,c = a{r^2},d = a{r^3}\]
\[ \Rightarrow (\log ab) = (\log a + \log b) \]
Complete step-by-step solution:
To be able to answer this question, one must be familiar with concepts such as progressions. Take care of the calculations so that you are certain of the final result. We need to understand concepts of logarithms.
We have been given in the question that,
The sequence \[{a^x} = {b^y} = {c^z} = {d^u}\]and\[a,b,c,d\] are in Geometric progression.
Since,\[a,b,c,d\] are in Geometric progression.
Let us assume that,
\[b = ar,c = a{r^2},d = a{r^3}\]
Taking logarithm for the equation\[b = {\rm{ ar }}\quad c = a{r^2}\quad d = a{r^3}\], we get
\[ \Rightarrow x(\log a) = y(\log a + \log r) = z(\log a + 2\log r) = u(\log a + 3\log r) = k\]--- (1)
Now, we have to solve each term with k from the above equation:
Therefore, for each term of the equation (1), we have to equate the sequence with \[k\]:
\[x = \frac{k}{{\log a}}; y = \frac{k}{{\log a + \log r}};z = \frac{k}{{\log a + 2\log r}}; u = \frac{k}{{\log a + 3\log r}}\]
Since, \[\log a,\log a + \log r,\log a + 2\log r,\log a + 3\log r\] are in Arithmetic progression
Therefore, \[{\rm{x}},{\rm{y}},{\rm{z}},{\rm{u}}\]are in Harmonic progression.
Hence, the option C is correct.
Note:
The problem can also be solved by assuming the common ratio of \[a\],\[b\] and \[c\] as \[r\]. To find the roots of the quadratic equation \[a{x^2} + 2bx + c = 0\], we make substitution \[b = ar,c = a{r^2}\]. We then substitute those roots in the quadratic equation and solve the problem again. We should not choose numbers at random for \[abc\] because this complicates the calculation.
We begin by remembering that a, b, c and d are in G.P (Geometric Progression), and assuming \[b = ar,c = a{r^2},d = a{r^3}\] and proceed by taking logarithms for the stated information to solve further. Ad we equate the logarithmic equation to k and then solve each term with respect to k to determine the required progression.
Formula used:
if a, b, c and d are in G.P (Geometric Progression), and assuming
\[b = ar,c = a{r^2},d = a{r^3}\]
\[ \Rightarrow (\log ab) = (\log a + \log b) \]
Complete step-by-step solution:
To be able to answer this question, one must be familiar with concepts such as progressions. Take care of the calculations so that you are certain of the final result. We need to understand concepts of logarithms.
We have been given in the question that,
The sequence \[{a^x} = {b^y} = {c^z} = {d^u}\]and\[a,b,c,d\] are in Geometric progression.
Since,\[a,b,c,d\] are in Geometric progression.
Let us assume that,
\[b = ar,c = a{r^2},d = a{r^3}\]
Taking logarithm for the equation\[b = {\rm{ ar }}\quad c = a{r^2}\quad d = a{r^3}\], we get
\[ \Rightarrow x(\log a) = y(\log a + \log r) = z(\log a + 2\log r) = u(\log a + 3\log r) = k\]--- (1)
Now, we have to solve each term with k from the above equation:
Therefore, for each term of the equation (1), we have to equate the sequence with \[k\]:
\[x = \frac{k}{{\log a}}; y = \frac{k}{{\log a + \log r}};z = \frac{k}{{\log a + 2\log r}}; u = \frac{k}{{\log a + 3\log r}}\]
Since, \[\log a,\log a + \log r,\log a + 2\log r,\log a + 3\log r\] are in Arithmetic progression
Therefore, \[{\rm{x}},{\rm{y}},{\rm{z}},{\rm{u}}\]are in Harmonic progression.
Hence, the option C is correct.
Note:
The problem can also be solved by assuming the common ratio of \[a\],\[b\] and \[c\] as \[r\]. To find the roots of the quadratic equation \[a{x^2} + 2bx + c = 0\], we make substitution \[b = ar,c = a{r^2}\]. We then substitute those roots in the quadratic equation and solve the problem again. We should not choose numbers at random for \[abc\] because this complicates the calculation.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
