
f(x)= \[\left[ \begin{align}
& \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \ x\ne \dfrac{\pi }{4} \\
& k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=\dfrac{\pi }{4} \\
\end{align} \right]\] if function f is continuous at x= \[\dfrac{\pi }{4}\] , find k.
Answer
232.8k+ views
Hint: If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
The formula that will be used in the solution is as follows:
If $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ and $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{0}{0}$ or $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{\infty }{\infty }$ then the value of limit is given as\[\underset{x\to t}{\mathop{\lim }}\,f(x)=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g(x)}{h(x)}=\dfrac{{g}'(t)}{{h}'(t)}\] .
The above formula is known as L’Hospital rule and it is used to find the limit of a particular function.
Complete step-by-step answer:
As mentioned in the question, we have to find the value of k by checking the continuity of the given function.
We will first find the value of LHL.
Firstly, we will put the limit in the function and then see what value is obtained.
Now, LHL is given as:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,f(x) \\
& \Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
\end{align}\]
Putting the value in the function we get:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow LHL=\left( \dfrac{\sin {{\dfrac{\pi }{4}}^{-}}-\cos {{\dfrac{\pi }{4}}^{-}}}{{{\dfrac{\pi }{4}}^{-}}-\dfrac{\pi }{4}} \right) \\
&\Rightarrow LHL=\left( \dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \right) \\
&\Rightarrow LHL=\dfrac{0}{0} \\
\end{align}\]
The LHL comes out as $\dfrac{0}{0}$.
Now, we know that when a limit comes out in the form of $\dfrac{0}{0}$, we can solve it by using L-Hospital rule given as:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g'\left( x \right)}{h'\left( x \right)}$.
Using L-H rule for obtaining LHL, we get:
\[LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}$
Putting the value of the limit, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \sin x+\cos x \right) \\
&\Rightarrow LHL=\sin {{\dfrac{\pi }{4}}^{-}}+\cos {{\dfrac{\pi }{4}}^{-}} \\
&\Rightarrow LHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow LHL=\dfrac{2}{\sqrt{2}} \\
&\Rightarrow LHL=\sqrt{2} \\
\end{align}$
Thus, the value of LHL is $\sqrt{2}$.
Similarly,
For finding the RHL, we write the expression as
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,f(x) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\dfrac{\sin {{\dfrac{\pi }{4}}^{+}}-\cos {{\dfrac{\pi }{4}}^{+}}}{{{\dfrac{\pi }{4}}^{+}}-\dfrac{\pi }{4}} \\
&\Rightarrow RHL=\dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \\
&\Rightarrow RHL=\dfrac{0}{0} \\
\end{align}\]
Thus, we will use L-H rule to find the RHL. Using L-H rule for finding out the RHL, we get:
\[RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x we get:
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}\]
Putting the value of limit we get:
$\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
&\Rightarrow RHL=\cos {{\dfrac{\pi }{4}}^{+}}+\sin {{\dfrac{\pi }{4}}^{+}} \\
&\Rightarrow RHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow RHL=\dfrac{2}{\sqrt{2}}=\sqrt{2} \\
\end{align}$
Thus, the value of RHL is $\sqrt{2}$.
Now, as L.H.L and R.H.L exist and are equal, hence, the value of the function is equal to this value as the function is continuous. Therefore, we get
\[\begin{align}
& f\left( \dfrac{\pi }{4} \right)=k \\
&\Rightarrow k=\sqrt{2} \\
\end{align}\]
Hence, the value of k is \[\sqrt{2}\].
Note: The students can make an error if finding the value of k if they don’t know the basic definition of continuity of a function which is as follows:
If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
Also, we have here used the L-H rule. Remember that this rule is only applied when after keeping the value of limit in the function, we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$.
The formula that will be used in the solution is as follows:
If $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ and $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{0}{0}$ or $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{\infty }{\infty }$ then the value of limit is given as\[\underset{x\to t}{\mathop{\lim }}\,f(x)=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g(x)}{h(x)}=\dfrac{{g}'(t)}{{h}'(t)}\] .
The above formula is known as L’Hospital rule and it is used to find the limit of a particular function.
Complete step-by-step answer:
As mentioned in the question, we have to find the value of k by checking the continuity of the given function.
We will first find the value of LHL.
Firstly, we will put the limit in the function and then see what value is obtained.
Now, LHL is given as:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,f(x) \\
& \Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
\end{align}\]
Putting the value in the function we get:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow LHL=\left( \dfrac{\sin {{\dfrac{\pi }{4}}^{-}}-\cos {{\dfrac{\pi }{4}}^{-}}}{{{\dfrac{\pi }{4}}^{-}}-\dfrac{\pi }{4}} \right) \\
&\Rightarrow LHL=\left( \dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \right) \\
&\Rightarrow LHL=\dfrac{0}{0} \\
\end{align}\]
The LHL comes out as $\dfrac{0}{0}$.
Now, we know that when a limit comes out in the form of $\dfrac{0}{0}$, we can solve it by using L-Hospital rule given as:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g'\left( x \right)}{h'\left( x \right)}$.
Using L-H rule for obtaining LHL, we get:
\[LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}$
Putting the value of the limit, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \sin x+\cos x \right) \\
&\Rightarrow LHL=\sin {{\dfrac{\pi }{4}}^{-}}+\cos {{\dfrac{\pi }{4}}^{-}} \\
&\Rightarrow LHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow LHL=\dfrac{2}{\sqrt{2}} \\
&\Rightarrow LHL=\sqrt{2} \\
\end{align}$
Thus, the value of LHL is $\sqrt{2}$.
Similarly,
For finding the RHL, we write the expression as
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,f(x) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\dfrac{\sin {{\dfrac{\pi }{4}}^{+}}-\cos {{\dfrac{\pi }{4}}^{+}}}{{{\dfrac{\pi }{4}}^{+}}-\dfrac{\pi }{4}} \\
&\Rightarrow RHL=\dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \\
&\Rightarrow RHL=\dfrac{0}{0} \\
\end{align}\]
Thus, we will use L-H rule to find the RHL. Using L-H rule for finding out the RHL, we get:
\[RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x we get:
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}\]
Putting the value of limit we get:
$\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
&\Rightarrow RHL=\cos {{\dfrac{\pi }{4}}^{+}}+\sin {{\dfrac{\pi }{4}}^{+}} \\
&\Rightarrow RHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow RHL=\dfrac{2}{\sqrt{2}}=\sqrt{2} \\
\end{align}$
Thus, the value of RHL is $\sqrt{2}$.
Now, as L.H.L and R.H.L exist and are equal, hence, the value of the function is equal to this value as the function is continuous. Therefore, we get
\[\begin{align}
& f\left( \dfrac{\pi }{4} \right)=k \\
&\Rightarrow k=\sqrt{2} \\
\end{align}\]
Hence, the value of k is \[\sqrt{2}\].
Note: The students can make an error if finding the value of k if they don’t know the basic definition of continuity of a function which is as follows:
If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
Also, we have here used the L-H rule. Remember that this rule is only applied when after keeping the value of limit in the function, we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

