
f(x)= \[\left[ \begin{align}
& \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \ x\ne \dfrac{\pi }{4} \\
& k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=\dfrac{\pi }{4} \\
\end{align} \right]\] if function f is continuous at x= \[\dfrac{\pi }{4}\] , find k.
Answer
219.9k+ views
Hint: If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
The formula that will be used in the solution is as follows:
If $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ and $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{0}{0}$ or $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{\infty }{\infty }$ then the value of limit is given as\[\underset{x\to t}{\mathop{\lim }}\,f(x)=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g(x)}{h(x)}=\dfrac{{g}'(t)}{{h}'(t)}\] .
The above formula is known as L’Hospital rule and it is used to find the limit of a particular function.
Complete step-by-step answer:
As mentioned in the question, we have to find the value of k by checking the continuity of the given function.
We will first find the value of LHL.
Firstly, we will put the limit in the function and then see what value is obtained.
Now, LHL is given as:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,f(x) \\
& \Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
\end{align}\]
Putting the value in the function we get:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow LHL=\left( \dfrac{\sin {{\dfrac{\pi }{4}}^{-}}-\cos {{\dfrac{\pi }{4}}^{-}}}{{{\dfrac{\pi }{4}}^{-}}-\dfrac{\pi }{4}} \right) \\
&\Rightarrow LHL=\left( \dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \right) \\
&\Rightarrow LHL=\dfrac{0}{0} \\
\end{align}\]
The LHL comes out as $\dfrac{0}{0}$.
Now, we know that when a limit comes out in the form of $\dfrac{0}{0}$, we can solve it by using L-Hospital rule given as:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g'\left( x \right)}{h'\left( x \right)}$.
Using L-H rule for obtaining LHL, we get:
\[LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}$
Putting the value of the limit, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \sin x+\cos x \right) \\
&\Rightarrow LHL=\sin {{\dfrac{\pi }{4}}^{-}}+\cos {{\dfrac{\pi }{4}}^{-}} \\
&\Rightarrow LHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow LHL=\dfrac{2}{\sqrt{2}} \\
&\Rightarrow LHL=\sqrt{2} \\
\end{align}$
Thus, the value of LHL is $\sqrt{2}$.
Similarly,
For finding the RHL, we write the expression as
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,f(x) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\dfrac{\sin {{\dfrac{\pi }{4}}^{+}}-\cos {{\dfrac{\pi }{4}}^{+}}}{{{\dfrac{\pi }{4}}^{+}}-\dfrac{\pi }{4}} \\
&\Rightarrow RHL=\dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \\
&\Rightarrow RHL=\dfrac{0}{0} \\
\end{align}\]
Thus, we will use L-H rule to find the RHL. Using L-H rule for finding out the RHL, we get:
\[RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x we get:
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}\]
Putting the value of limit we get:
$\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
&\Rightarrow RHL=\cos {{\dfrac{\pi }{4}}^{+}}+\sin {{\dfrac{\pi }{4}}^{+}} \\
&\Rightarrow RHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow RHL=\dfrac{2}{\sqrt{2}}=\sqrt{2} \\
\end{align}$
Thus, the value of RHL is $\sqrt{2}$.
Now, as L.H.L and R.H.L exist and are equal, hence, the value of the function is equal to this value as the function is continuous. Therefore, we get
\[\begin{align}
& f\left( \dfrac{\pi }{4} \right)=k \\
&\Rightarrow k=\sqrt{2} \\
\end{align}\]
Hence, the value of k is \[\sqrt{2}\].
Note: The students can make an error if finding the value of k if they don’t know the basic definition of continuity of a function which is as follows:
If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
Also, we have here used the L-H rule. Remember that this rule is only applied when after keeping the value of limit in the function, we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$.
The formula that will be used in the solution is as follows:
If $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ and $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{0}{0}$ or $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{\infty }{\infty }$ then the value of limit is given as\[\underset{x\to t}{\mathop{\lim }}\,f(x)=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g(x)}{h(x)}=\dfrac{{g}'(t)}{{h}'(t)}\] .
The above formula is known as L’Hospital rule and it is used to find the limit of a particular function.
Complete step-by-step answer:
As mentioned in the question, we have to find the value of k by checking the continuity of the given function.
We will first find the value of LHL.
Firstly, we will put the limit in the function and then see what value is obtained.
Now, LHL is given as:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,f(x) \\
& \Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
\end{align}\]
Putting the value in the function we get:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow LHL=\left( \dfrac{\sin {{\dfrac{\pi }{4}}^{-}}-\cos {{\dfrac{\pi }{4}}^{-}}}{{{\dfrac{\pi }{4}}^{-}}-\dfrac{\pi }{4}} \right) \\
&\Rightarrow LHL=\left( \dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \right) \\
&\Rightarrow LHL=\dfrac{0}{0} \\
\end{align}\]
The LHL comes out as $\dfrac{0}{0}$.
Now, we know that when a limit comes out in the form of $\dfrac{0}{0}$, we can solve it by using L-Hospital rule given as:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g'\left( x \right)}{h'\left( x \right)}$.
Using L-H rule for obtaining LHL, we get:
\[LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}$
Putting the value of the limit, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \sin x+\cos x \right) \\
&\Rightarrow LHL=\sin {{\dfrac{\pi }{4}}^{-}}+\cos {{\dfrac{\pi }{4}}^{-}} \\
&\Rightarrow LHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow LHL=\dfrac{2}{\sqrt{2}} \\
&\Rightarrow LHL=\sqrt{2} \\
\end{align}$
Thus, the value of LHL is $\sqrt{2}$.
Similarly,
For finding the RHL, we write the expression as
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,f(x) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\dfrac{\sin {{\dfrac{\pi }{4}}^{+}}-\cos {{\dfrac{\pi }{4}}^{+}}}{{{\dfrac{\pi }{4}}^{+}}-\dfrac{\pi }{4}} \\
&\Rightarrow RHL=\dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \\
&\Rightarrow RHL=\dfrac{0}{0} \\
\end{align}\]
Thus, we will use L-H rule to find the RHL. Using L-H rule for finding out the RHL, we get:
\[RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x we get:
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}\]
Putting the value of limit we get:
$\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
&\Rightarrow RHL=\cos {{\dfrac{\pi }{4}}^{+}}+\sin {{\dfrac{\pi }{4}}^{+}} \\
&\Rightarrow RHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow RHL=\dfrac{2}{\sqrt{2}}=\sqrt{2} \\
\end{align}$
Thus, the value of RHL is $\sqrt{2}$.
Now, as L.H.L and R.H.L exist and are equal, hence, the value of the function is equal to this value as the function is continuous. Therefore, we get
\[\begin{align}
& f\left( \dfrac{\pi }{4} \right)=k \\
&\Rightarrow k=\sqrt{2} \\
\end{align}\]
Hence, the value of k is \[\sqrt{2}\].
Note: The students can make an error if finding the value of k if they don’t know the basic definition of continuity of a function which is as follows:
If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
Also, we have here used the L-H rule. Remember that this rule is only applied when after keeping the value of limit in the function, we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

