
f(x)= \[\left[ \begin{align}
& \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \ x\ne \dfrac{\pi }{4} \\
& k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=\dfrac{\pi }{4} \\
\end{align} \right]\] if function f is continuous at x= \[\dfrac{\pi }{4}\] , find k.
Answer
145.2k+ views
Hint: If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
The formula that will be used in the solution is as follows:
If $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ and $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{0}{0}$ or $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{\infty }{\infty }$ then the value of limit is given as\[\underset{x\to t}{\mathop{\lim }}\,f(x)=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g(x)}{h(x)}=\dfrac{{g}'(t)}{{h}'(t)}\] .
The above formula is known as L’Hospital rule and it is used to find the limit of a particular function.
Complete step-by-step answer:
As mentioned in the question, we have to find the value of k by checking the continuity of the given function.
We will first find the value of LHL.
Firstly, we will put the limit in the function and then see what value is obtained.
Now, LHL is given as:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,f(x) \\
& \Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
\end{align}\]
Putting the value in the function we get:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow LHL=\left( \dfrac{\sin {{\dfrac{\pi }{4}}^{-}}-\cos {{\dfrac{\pi }{4}}^{-}}}{{{\dfrac{\pi }{4}}^{-}}-\dfrac{\pi }{4}} \right) \\
&\Rightarrow LHL=\left( \dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \right) \\
&\Rightarrow LHL=\dfrac{0}{0} \\
\end{align}\]
The LHL comes out as $\dfrac{0}{0}$.
Now, we know that when a limit comes out in the form of $\dfrac{0}{0}$, we can solve it by using L-Hospital rule given as:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g'\left( x \right)}{h'\left( x \right)}$.
Using L-H rule for obtaining LHL, we get:
\[LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}$
Putting the value of the limit, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \sin x+\cos x \right) \\
&\Rightarrow LHL=\sin {{\dfrac{\pi }{4}}^{-}}+\cos {{\dfrac{\pi }{4}}^{-}} \\
&\Rightarrow LHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow LHL=\dfrac{2}{\sqrt{2}} \\
&\Rightarrow LHL=\sqrt{2} \\
\end{align}$
Thus, the value of LHL is $\sqrt{2}$.
Similarly,
For finding the RHL, we write the expression as
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,f(x) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\dfrac{\sin {{\dfrac{\pi }{4}}^{+}}-\cos {{\dfrac{\pi }{4}}^{+}}}{{{\dfrac{\pi }{4}}^{+}}-\dfrac{\pi }{4}} \\
&\Rightarrow RHL=\dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \\
&\Rightarrow RHL=\dfrac{0}{0} \\
\end{align}\]
Thus, we will use L-H rule to find the RHL. Using L-H rule for finding out the RHL, we get:
\[RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x we get:
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}\]
Putting the value of limit we get:
$\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
&\Rightarrow RHL=\cos {{\dfrac{\pi }{4}}^{+}}+\sin {{\dfrac{\pi }{4}}^{+}} \\
&\Rightarrow RHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow RHL=\dfrac{2}{\sqrt{2}}=\sqrt{2} \\
\end{align}$
Thus, the value of RHL is $\sqrt{2}$.
Now, as L.H.L and R.H.L exist and are equal, hence, the value of the function is equal to this value as the function is continuous. Therefore, we get
\[\begin{align}
& f\left( \dfrac{\pi }{4} \right)=k \\
&\Rightarrow k=\sqrt{2} \\
\end{align}\]
Hence, the value of k is \[\sqrt{2}\].
Note: The students can make an error if finding the value of k if they don’t know the basic definition of continuity of a function which is as follows:
If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
Also, we have here used the L-H rule. Remember that this rule is only applied when after keeping the value of limit in the function, we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$.
The formula that will be used in the solution is as follows:
If $f\left( x \right)=\dfrac{g\left( x \right)}{h\left( x \right)}$ and $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{0}{0}$ or $\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\dfrac{\infty }{\infty }$ then the value of limit is given as\[\underset{x\to t}{\mathop{\lim }}\,f(x)=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g(x)}{h(x)}=\dfrac{{g}'(t)}{{h}'(t)}\] .
The above formula is known as L’Hospital rule and it is used to find the limit of a particular function.
Complete step-by-step answer:
As mentioned in the question, we have to find the value of k by checking the continuity of the given function.
We will first find the value of LHL.
Firstly, we will put the limit in the function and then see what value is obtained.
Now, LHL is given as:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,f(x) \\
& \Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
\end{align}\]
Putting the value in the function we get:
\[\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow LHL=\left( \dfrac{\sin {{\dfrac{\pi }{4}}^{-}}-\cos {{\dfrac{\pi }{4}}^{-}}}{{{\dfrac{\pi }{4}}^{-}}-\dfrac{\pi }{4}} \right) \\
&\Rightarrow LHL=\left( \dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \right) \\
&\Rightarrow LHL=\dfrac{0}{0} \\
\end{align}\]
The LHL comes out as $\dfrac{0}{0}$.
Now, we know that when a limit comes out in the form of $\dfrac{0}{0}$, we can solve it by using L-Hospital rule given as:
$\underset{x\to t}{\mathop{\lim }}\,\dfrac{g\left( x \right)}{h\left( x \right)}=\underset{x\to t}{\mathop{\lim }}\,\dfrac{g'\left( x \right)}{h'\left( x \right)}$.
Using L-H rule for obtaining LHL, we get:
\[LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}$
Putting the value of the limit, we get:
$\begin{align}
& LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \sin x+\cos x \right) \\
&\Rightarrow LHL=\sin {{\dfrac{\pi }{4}}^{-}}+\cos {{\dfrac{\pi }{4}}^{-}} \\
&\Rightarrow LHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow LHL=\dfrac{2}{\sqrt{2}} \\
&\Rightarrow LHL=\sqrt{2} \\
\end{align}$
Thus, the value of LHL is $\sqrt{2}$.
Similarly,
For finding the RHL, we write the expression as
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,f(x) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\dfrac{\sin {{\dfrac{\pi }{4}}^{+}}-\cos {{\dfrac{\pi }{4}}^{+}}}{{{\dfrac{\pi }{4}}^{+}}-\dfrac{\pi }{4}} \\
&\Rightarrow RHL=\dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}}{0} \\
&\Rightarrow RHL=\dfrac{0}{0} \\
\end{align}\]
Thus, we will use L-H rule to find the RHL. Using L-H rule for finding out the RHL, we get:
\[RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right)\]
Differentiating the numerator and the denominator w.r.t. x we get:
\[\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\sin x-\cos x}{x-\dfrac{\pi }{4}}\ \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \dfrac{\cos x-\left( -\sin x \right)}{1-0} \right) \\
&\Rightarrow RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
\end{align}\]
Putting the value of limit we get:
$\begin{align}
& RHL=\underset{x\to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,\left( \cos x+\sin x \right) \\
&\Rightarrow RHL=\cos {{\dfrac{\pi }{4}}^{+}}+\sin {{\dfrac{\pi }{4}}^{+}} \\
&\Rightarrow RHL=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \\
&\Rightarrow RHL=\dfrac{2}{\sqrt{2}}=\sqrt{2} \\
\end{align}$
Thus, the value of RHL is $\sqrt{2}$.
Now, as L.H.L and R.H.L exist and are equal, hence, the value of the function is equal to this value as the function is continuous. Therefore, we get
\[\begin{align}
& f\left( \dfrac{\pi }{4} \right)=k \\
&\Rightarrow k=\sqrt{2} \\
\end{align}\]
Hence, the value of k is \[\sqrt{2}\].
Note: The students can make an error if finding the value of k if they don’t know the basic definition of continuity of a function which is as follows:
If a function is continuous at a particular value of x, then this implies that the left hand limit that is L.H.L and the right hand limit that is R.H.L exist and they are equal to the value of the function at that particular value of x.
Also, we have here used the L-H rule. Remember that this rule is only applied when after keeping the value of limit in the function, we get $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$.
Recently Updated Pages
Difference Between Rows and Columns: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
