
From the top of a hill h meters high, the angles of depressions of the top and bottom of a pillar are $\alpha $ and $\beta $, respectively. The height (in meters) of the pillar is?
A. $\dfrac{{h[\tan \beta - \tan \alpha ]}}{{\tan \beta }}$
B.$\dfrac{{h[\tan \alpha - \tan \beta ]}}{{\tan \alpha }}$
C. $\dfrac{{h[\tan \alpha + \tan \beta ]}}{{\tan \beta }}$
D. $\dfrac{{h[\tan \alpha + \tan \beta ]}}{{\tan \alpha }}$
Answer
232.5k+ views
Hint: Since the problem is based on applications of trigonometry hence, it is necessary to draw the figure for better visualization of the problem. Here, we will use proper trigonometric identities and ratios and then equate them to get the required dimension of a pillar and find out the solution to a given problem.
Complete step by step Solution:
The angles of depression of the top and bottom of a pillar $\alpha $ and $\beta $ respectively (given).
Let the height of the hill $(AD)$ be $h$ and the height of the pillar $(CE)$ be ${h_1}$ as shown in the figure.
Let the distance between the feet of the hill and pillar $(DE)$ be $x$.

In \[\vartriangle ABC\],
$\tan \alpha = \dfrac{P}{B} = \dfrac{{AB}}{{BC}}$
From the figure, it is clear that $AB = h - {h_1}$ and $BC = x$, substitute these values in the above expression, we get
$\tan \alpha = \dfrac{{h - {h_1}}}{x}$
$x = \dfrac{{h - {h_1}}}{{\tan \alpha }}$ …. (1)
In \[\vartriangle ADE\],
$\tan \beta = \dfrac{P}{B} = \dfrac{{AD}}{{DE}}$
From the figure, it is clear that $AD = h$ and $DE = x$, substitute these values in the above expression, we get
$\tan \beta = \dfrac{h}{x}$
$x = \dfrac{h}{{\tan \beta }}$ …. (2)
Equating eq. (1) and (2), we get
$\dfrac{{h - {h_1}}}{{\tan \alpha }} = \dfrac{h}{{\tan \beta }}$
By Cross-multiplication,
$h.\tan \beta - {h_1}.\tan \beta = h.\tan \alpha $
$h.\tan \beta - h.\tan \alpha = {h_1}.\tan \beta $
Taking common$h$from the above expression, we get
$h(\tan \beta - \tan \alpha ) = {h_1}.\tan \beta $
${h_1} = \dfrac{{h(\tan \beta - \tan \alpha )}}{{\tan \beta }}$
Thus, the Height of the pillar is $\dfrac{{h(\tan \beta - \tan \alpha )}}{{\tan \beta }}$ .
Hence, the correct option is A.
Note: In the problems based on the application of trigonometry, apply the required trigonometric ratios to get the accurate solution to the problem. Sometimes, the problem seems to be complex while analyzing the problem hence, it is advised to draw a figure and calculate ratios one by one carefully.
Complete step by step Solution:
The angles of depression of the top and bottom of a pillar $\alpha $ and $\beta $ respectively (given).
Let the height of the hill $(AD)$ be $h$ and the height of the pillar $(CE)$ be ${h_1}$ as shown in the figure.
Let the distance between the feet of the hill and pillar $(DE)$ be $x$.

In \[\vartriangle ABC\],
$\tan \alpha = \dfrac{P}{B} = \dfrac{{AB}}{{BC}}$
From the figure, it is clear that $AB = h - {h_1}$ and $BC = x$, substitute these values in the above expression, we get
$\tan \alpha = \dfrac{{h - {h_1}}}{x}$
$x = \dfrac{{h - {h_1}}}{{\tan \alpha }}$ …. (1)
In \[\vartriangle ADE\],
$\tan \beta = \dfrac{P}{B} = \dfrac{{AD}}{{DE}}$
From the figure, it is clear that $AD = h$ and $DE = x$, substitute these values in the above expression, we get
$\tan \beta = \dfrac{h}{x}$
$x = \dfrac{h}{{\tan \beta }}$ …. (2)
Equating eq. (1) and (2), we get
$\dfrac{{h - {h_1}}}{{\tan \alpha }} = \dfrac{h}{{\tan \beta }}$
By Cross-multiplication,
$h.\tan \beta - {h_1}.\tan \beta = h.\tan \alpha $
$h.\tan \beta - h.\tan \alpha = {h_1}.\tan \beta $
Taking common$h$from the above expression, we get
$h(\tan \beta - \tan \alpha ) = {h_1}.\tan \beta $
${h_1} = \dfrac{{h(\tan \beta - \tan \alpha )}}{{\tan \beta }}$
Thus, the Height of the pillar is $\dfrac{{h(\tan \beta - \tan \alpha )}}{{\tan \beta }}$ .
Hence, the correct option is A.
Note: In the problems based on the application of trigonometry, apply the required trigonometric ratios to get the accurate solution to the problem. Sometimes, the problem seems to be complex while analyzing the problem hence, it is advised to draw a figure and calculate ratios one by one carefully.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Square vs Rhombus: Key Differences Explained for Students

Power vs Exponent: Key Differences Explained for Students

Arithmetic Mean Formula Explained Simply

Algebraic Formula: Key Concepts & Easy Examples

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

