
From the following find the correct relation [MP PET 1990]
E. $(AB{)}'={A}'{B}$
F. $(AB{)}'={B}'{A}'$
G. ${{A}^{-1}}=\dfrac{adj\,A}{A}$
H. ${{(AB)}^{-1}}={{A}^{-1}}{{B}^{-1}}$
Answer
161.1k+ views
Hint: In this question, we have to check each option satisfies the properties of Matrix. The matrix that results from swapping a matrix's rows and columns is known as the matrix's transpose.
Formula Used: Transpose Property:
$(AB{)}'={B}'{A}'$
Complete step by step solution: Let’s check for option A. We have (AB{)}'={A}'{B}
It’s incorrect.
In option B we have $(AB{)}'={B}'{A}'$
The transpose of the products of two matrices is simply the product of their transposes in the reversed order.
Therefore,
$(AB{)}'={B}'{A}'$
It’s correct.
In option C
We have ${{A}^{-1}}=\dfrac{adj\,A}{A}$
It’s Incorrect. In the inverse formula we use determinant of matrix not the matrix.
For option D we have given ${{(AB)}^{-1}}={{A}^{-1}}{{B}^{-1}}$
Its Incorrect. If A and B are nonsingular matrices, then AB is non-singular and is given by ${{(AB)}^{-1}}={{B}^{-1}}{{A}^{-1}}$.
Option ‘B’ is correct
Note: Keep in mind that multiplying the individual transposes of each matrix in reverse order produces the same result as multiplying the two matrices in transpose.
Additional Information:
Properties of Transpose of a matrix
2. The constant multiplied by the transpose of the matrix is equal to the transpose of the matrix times a scalar $(kA)^{T}= kA$.
3. $(A + B)^{T}= A^T + B^T$
4. The transpose of a pair of matrices equals the product of the products of their transposes in the opposite direction: $(AB)^{T} = B^{T} A^{T}$. The product of multiple matrices has the same formula: $(ABC)^{T} = C^{T}B^{T}A^{T}$
Formula Used: Transpose Property:
$(AB{)}'={B}'{A}'$
Complete step by step solution: Let’s check for option A. We have (AB{)}'={A}'{B}
It’s incorrect.
In option B we have $(AB{)}'={B}'{A}'$
The transpose of the products of two matrices is simply the product of their transposes in the reversed order.
Therefore,
$(AB{)}'={B}'{A}'$
It’s correct.
In option C
We have ${{A}^{-1}}=\dfrac{adj\,A}{A}$
It’s Incorrect. In the inverse formula we use determinant of matrix not the matrix.
For option D we have given ${{(AB)}^{-1}}={{A}^{-1}}{{B}^{-1}}$
Its Incorrect. If A and B are nonsingular matrices, then AB is non-singular and is given by ${{(AB)}^{-1}}={{B}^{-1}}{{A}^{-1}}$.
Option ‘B’ is correct
Note: Keep in mind that multiplying the individual transposes of each matrix in reverse order produces the same result as multiplying the two matrices in transpose.
Additional Information:
Properties of Transpose of a matrix
- 1. The matrix itself is the transpose of the transpose of the matrix: $(A^T)^{T} = A$.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
