
Formula for the following compound Tin (IV) oxide is $SnO_2$:
(A) True
(B) False
Answer
168.9k+ views
Hint: We should know that Tin dioxide is a tin oxide compound which consists of Tin (IV) covalently bound to two oxygen atoms. The chemical formula of Tin (IV) oxide, will further be understood from the structure of Tin (IV) oxide.
Complete step by step answer:
> Tin (IV) oxide is also known as Stannic Oxide. We know that the symbol of Tin is Sn.
Here is the structure of Tin (IV) oxide, for better understanding of the formula:

> The Tin (IV) crystallizes with the rutile structure. As such the Tin atoms are 6 coordinate and the oxygen atoms are 3 coordinate. ${\text{Sn}}{{\text{O}}_{\text{2}}}$ is usually regarded as an oxygen deficient n type semiconductor. Hydrous forms of ${\text{Sn}}{{\text{O}}_{\text{2}}}$ has been described as stannic acid.
> The bond formation of Tin and the two oxygen atoms are known as just polar covalent. This is because of the electronegativity difference between Tin (1.8) and that of Oxygen (3.5). So, with a difference of only 1.7 in electronegativity, ionic bonds cannot be formed.
> The chemical formula of Tin (IV) oxide is ${\text{Sn}}{{\text{O}}_{\text{2}}}$.
Therefore, the answer to the question that the formula for the following compound Tin (IV) oxide is True.
So Option A is the correct answer to the mentioned question.
- Tin (IV) oxide appears as white or off white crystalline solid or powder. It is insoluble in water and soluble in concentrated sulphuric acid and hydrochloric acid. It occurs in nature as a mineral cassiterite. It is used as a catalyst in putty as a polishing powder for steel and glass, in ceramic places and colours.
Note: As mentioned earlier ${\text{Sn}}{{\text{O}}_{\text{2}}}$ is insoluble in water. But it is also amphoteric in nature. By amphoteric we mean, it dissolves in acids and bases. It is also diamagnetic in nature.
Complete step by step answer:
> Tin (IV) oxide is also known as Stannic Oxide. We know that the symbol of Tin is Sn.
Here is the structure of Tin (IV) oxide, for better understanding of the formula:

> The Tin (IV) crystallizes with the rutile structure. As such the Tin atoms are 6 coordinate and the oxygen atoms are 3 coordinate. ${\text{Sn}}{{\text{O}}_{\text{2}}}$ is usually regarded as an oxygen deficient n type semiconductor. Hydrous forms of ${\text{Sn}}{{\text{O}}_{\text{2}}}$ has been described as stannic acid.
> The bond formation of Tin and the two oxygen atoms are known as just polar covalent. This is because of the electronegativity difference between Tin (1.8) and that of Oxygen (3.5). So, with a difference of only 1.7 in electronegativity, ionic bonds cannot be formed.
> The chemical formula of Tin (IV) oxide is ${\text{Sn}}{{\text{O}}_{\text{2}}}$.
Therefore, the answer to the question that the formula for the following compound Tin (IV) oxide is True.
So Option A is the correct answer to the mentioned question.
- Tin (IV) oxide appears as white or off white crystalline solid or powder. It is insoluble in water and soluble in concentrated sulphuric acid and hydrochloric acid. It occurs in nature as a mineral cassiterite. It is used as a catalyst in putty as a polishing powder for steel and glass, in ceramic places and colours.
Note: As mentioned earlier ${\text{Sn}}{{\text{O}}_{\text{2}}}$ is insoluble in water. But it is also amphoteric in nature. By amphoteric we mean, it dissolves in acids and bases. It is also diamagnetic in nature.
Recently Updated Pages
Hydrocarbons: Types, Formula, Structure & Examples Explained

Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Types of Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
