
For $x > 0$, calculate the value of ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
A. 0
B. -1
C. 1
D. 2
Answer
233.1k+ views
Hint: First we will apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$. Then by using the logarithm property and L'hospital, we will calculate the limit of the second term.
Formula Used:
${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$\log {a^m} = m\log a$
$\ln \dfrac{1}{a} = - \ln a$
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
Apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$ = {\lim }_{x \to 0} {\left( {\sin x} \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Putting the limit in the first term
$ = {\lim }_{x \to 0} {\left( 0 \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
$ = 0 + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Rewrite the in the form ${\lim }_{x \to a} f\left( x \right) = {e^{{\lim }_{x \to a} \ln \left( {f\left( x \right)} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \ln \left[ {{{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]}}$
Now apply $\log {a^m} = m\log a$
$ = 0 + {e^{{\lim }_{x \to 0} \sin x\ln \dfrac{1}{x}}}$
Again apply the formula in the second term $\ln \dfrac{1}{a} = - \ln a$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \sin x\ln x} \right)}}$
Convert $\sin x$ into $\text{cosec }x$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\ln x}}{{\text{cosec }x}}} \right)}}$
If we put $x = 0$ in $\ln x$ and $\text{cosec }x$, then both will tend to infinity. So, we can apply the L' Hospital formula.
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\dfrac{1}{x}}}{{ - \text{cosec }x\cot x}}} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \left( {\dfrac{{\tan x}}{x} \cdot \sin x} \right)}}$
Now applying the formula ${\lim }_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 0 + {e^{{\lim }_{x \to 0} \dfrac{{\tan x}}{x} \cdot {\lim }_{x \to 0} \sin x}}$
Apply the formula ${\lim }_{x \to 0} \dfrac{{\tan x}}{x} = 1$
$ = 0 + {e^{1 \cdot \sin 0}}$
$ = 0 + {e^0}$ since $\sin 0 = 0$
Now apply the formula ${e^0} = 1$.
$ = 0 + 1 = 1$
Option ‘C’ is correct
Note: In the given question first you need to apply the sum of limit formula to break it into two limits. You can put the value of limit in the first term because you will get a value that is zero. But if you limit the value in the second term, then you will not get a finite value. So that you are unable to put the value of the limit in the second term.
Formula Used:
${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$\log {a^m} = m\log a$
$\ln \dfrac{1}{a} = - \ln a$
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
Apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$ = {\lim }_{x \to 0} {\left( {\sin x} \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Putting the limit in the first term
$ = {\lim }_{x \to 0} {\left( 0 \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
$ = 0 + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Rewrite the in the form ${\lim }_{x \to a} f\left( x \right) = {e^{{\lim }_{x \to a} \ln \left( {f\left( x \right)} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \ln \left[ {{{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]}}$
Now apply $\log {a^m} = m\log a$
$ = 0 + {e^{{\lim }_{x \to 0} \sin x\ln \dfrac{1}{x}}}$
Again apply the formula in the second term $\ln \dfrac{1}{a} = - \ln a$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \sin x\ln x} \right)}}$
Convert $\sin x$ into $\text{cosec }x$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\ln x}}{{\text{cosec }x}}} \right)}}$
If we put $x = 0$ in $\ln x$ and $\text{cosec }x$, then both will tend to infinity. So, we can apply the L' Hospital formula.
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\dfrac{1}{x}}}{{ - \text{cosec }x\cot x}}} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \left( {\dfrac{{\tan x}}{x} \cdot \sin x} \right)}}$
Now applying the formula ${\lim }_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 0 + {e^{{\lim }_{x \to 0} \dfrac{{\tan x}}{x} \cdot {\lim }_{x \to 0} \sin x}}$
Apply the formula ${\lim }_{x \to 0} \dfrac{{\tan x}}{x} = 1$
$ = 0 + {e^{1 \cdot \sin 0}}$
$ = 0 + {e^0}$ since $\sin 0 = 0$
Now apply the formula ${e^0} = 1$.
$ = 0 + 1 = 1$
Option ‘C’ is correct
Note: In the given question first you need to apply the sum of limit formula to break it into two limits. You can put the value of limit in the first term because you will get a value that is zero. But if you limit the value in the second term, then you will not get a finite value. So that you are unable to put the value of the limit in the second term.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding How a Current Loop Acts as a Magnetic Dipole

