
For $x > 0$, calculate the value of ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
A. 0
B. -1
C. 1
D. 2
Answer
216.6k+ views
Hint: First we will apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$. Then by using the logarithm property and L'hospital, we will calculate the limit of the second term.
Formula Used:
${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$\log {a^m} = m\log a$
$\ln \dfrac{1}{a} = - \ln a$
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
Apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$ = {\lim }_{x \to 0} {\left( {\sin x} \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Putting the limit in the first term
$ = {\lim }_{x \to 0} {\left( 0 \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
$ = 0 + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Rewrite the in the form ${\lim }_{x \to a} f\left( x \right) = {e^{{\lim }_{x \to a} \ln \left( {f\left( x \right)} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \ln \left[ {{{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]}}$
Now apply $\log {a^m} = m\log a$
$ = 0 + {e^{{\lim }_{x \to 0} \sin x\ln \dfrac{1}{x}}}$
Again apply the formula in the second term $\ln \dfrac{1}{a} = - \ln a$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \sin x\ln x} \right)}}$
Convert $\sin x$ into $\text{cosec }x$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\ln x}}{{\text{cosec }x}}} \right)}}$
If we put $x = 0$ in $\ln x$ and $\text{cosec }x$, then both will tend to infinity. So, we can apply the L' Hospital formula.
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\dfrac{1}{x}}}{{ - \text{cosec }x\cot x}}} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \left( {\dfrac{{\tan x}}{x} \cdot \sin x} \right)}}$
Now applying the formula ${\lim }_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 0 + {e^{{\lim }_{x \to 0} \dfrac{{\tan x}}{x} \cdot {\lim }_{x \to 0} \sin x}}$
Apply the formula ${\lim }_{x \to 0} \dfrac{{\tan x}}{x} = 1$
$ = 0 + {e^{1 \cdot \sin 0}}$
$ = 0 + {e^0}$ since $\sin 0 = 0$
Now apply the formula ${e^0} = 1$.
$ = 0 + 1 = 1$
Option ‘C’ is correct
Note: In the given question first you need to apply the sum of limit formula to break it into two limits. You can put the value of limit in the first term because you will get a value that is zero. But if you limit the value in the second term, then you will not get a finite value. So that you are unable to put the value of the limit in the second term.
Formula Used:
${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$\log {a^m} = m\log a$
$\ln \dfrac{1}{a} = - \ln a$
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
Apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$ = {\lim }_{x \to 0} {\left( {\sin x} \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Putting the limit in the first term
$ = {\lim }_{x \to 0} {\left( 0 \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
$ = 0 + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Rewrite the in the form ${\lim }_{x \to a} f\left( x \right) = {e^{{\lim }_{x \to a} \ln \left( {f\left( x \right)} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \ln \left[ {{{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]}}$
Now apply $\log {a^m} = m\log a$
$ = 0 + {e^{{\lim }_{x \to 0} \sin x\ln \dfrac{1}{x}}}$
Again apply the formula in the second term $\ln \dfrac{1}{a} = - \ln a$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \sin x\ln x} \right)}}$
Convert $\sin x$ into $\text{cosec }x$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\ln x}}{{\text{cosec }x}}} \right)}}$
If we put $x = 0$ in $\ln x$ and $\text{cosec }x$, then both will tend to infinity. So, we can apply the L' Hospital formula.
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\dfrac{1}{x}}}{{ - \text{cosec }x\cot x}}} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \left( {\dfrac{{\tan x}}{x} \cdot \sin x} \right)}}$
Now applying the formula ${\lim }_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 0 + {e^{{\lim }_{x \to 0} \dfrac{{\tan x}}{x} \cdot {\lim }_{x \to 0} \sin x}}$
Apply the formula ${\lim }_{x \to 0} \dfrac{{\tan x}}{x} = 1$
$ = 0 + {e^{1 \cdot \sin 0}}$
$ = 0 + {e^0}$ since $\sin 0 = 0$
Now apply the formula ${e^0} = 1$.
$ = 0 + 1 = 1$
Option ‘C’ is correct
Note: In the given question first you need to apply the sum of limit formula to break it into two limits. You can put the value of limit in the first term because you will get a value that is zero. But if you limit the value in the second term, then you will not get a finite value. So that you are unable to put the value of the limit in the second term.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

