
For $x > 0$, calculate the value of ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
A. 0
B. -1
C. 1
D. 2
Answer
162.6k+ views
Hint: First we will apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$. Then by using the logarithm property and L'hospital, we will calculate the limit of the second term.
Formula Used:
${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$\log {a^m} = m\log a$
$\ln \dfrac{1}{a} = - \ln a$
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
Apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$ = {\lim }_{x \to 0} {\left( {\sin x} \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Putting the limit in the first term
$ = {\lim }_{x \to 0} {\left( 0 \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
$ = 0 + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Rewrite the in the form ${\lim }_{x \to a} f\left( x \right) = {e^{{\lim }_{x \to a} \ln \left( {f\left( x \right)} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \ln \left[ {{{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]}}$
Now apply $\log {a^m} = m\log a$
$ = 0 + {e^{{\lim }_{x \to 0} \sin x\ln \dfrac{1}{x}}}$
Again apply the formula in the second term $\ln \dfrac{1}{a} = - \ln a$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \sin x\ln x} \right)}}$
Convert $\sin x$ into $\text{cosec }x$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\ln x}}{{\text{cosec }x}}} \right)}}$
If we put $x = 0$ in $\ln x$ and $\text{cosec }x$, then both will tend to infinity. So, we can apply the L' Hospital formula.
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\dfrac{1}{x}}}{{ - \text{cosec }x\cot x}}} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \left( {\dfrac{{\tan x}}{x} \cdot \sin x} \right)}}$
Now applying the formula ${\lim }_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 0 + {e^{{\lim }_{x \to 0} \dfrac{{\tan x}}{x} \cdot {\lim }_{x \to 0} \sin x}}$
Apply the formula ${\lim }_{x \to 0} \dfrac{{\tan x}}{x} = 1$
$ = 0 + {e^{1 \cdot \sin 0}}$
$ = 0 + {e^0}$ since $\sin 0 = 0$
Now apply the formula ${e^0} = 1$.
$ = 0 + 1 = 1$
Option ‘C’ is correct
Note: In the given question first you need to apply the sum of limit formula to break it into two limits. You can put the value of limit in the first term because you will get a value that is zero. But if you limit the value in the second term, then you will not get a finite value. So that you are unable to put the value of the limit in the second term.
Formula Used:
${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$\log {a^m} = m\log a$
$\ln \dfrac{1}{a} = - \ln a$
Complete step by step solution:
Given limit is ${\lim }_{x \to 0} \left[ {{{\left( {\sin x} \right)}^{\frac{1}{x}}} + {{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]$
Apply the formula ${\lim }_{x \to a} \left( {f\left( x \right) \pm g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \pm {\lim }_{x \to a} g\left( x \right)$
$ = {\lim }_{x \to 0} {\left( {\sin x} \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Putting the limit in the first term
$ = {\lim }_{x \to 0} {\left( 0 \right)^{\frac{1}{x}}} + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
$ = 0 + {\lim }_{x \to 0} {\left( {\dfrac{1}{x}} \right)^{\sin x}}$
Rewrite the in the form ${\lim }_{x \to a} f\left( x \right) = {e^{{\lim }_{x \to a} \ln \left( {f\left( x \right)} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \ln \left[ {{{\left( {\dfrac{1}{x}} \right)}^{\sin x}}} \right]}}$
Now apply $\log {a^m} = m\log a$
$ = 0 + {e^{{\lim }_{x \to 0} \sin x\ln \dfrac{1}{x}}}$
Again apply the formula in the second term $\ln \dfrac{1}{a} = - \ln a$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \sin x\ln x} \right)}}$
Convert $\sin x$ into $\text{cosec }x$
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\ln x}}{{\text{cosec }x}}} \right)}}$
If we put $x = 0$ in $\ln x$ and $\text{cosec }x$, then both will tend to infinity. So, we can apply the L' Hospital formula.
$ = 0 + {e^{{\lim }_{x \to 0} \left( { - \dfrac{{\dfrac{1}{x}}}{{ - \text{cosec }x\cot x}}} \right)}}$
$ = 0 + {e^{{\lim }_{x \to 0} \left( {\dfrac{{\tan x}}{x} \cdot \sin x} \right)}}$
Now applying the formula ${\lim }_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = {\lim }_{x \to a} f\left( x \right) \cdot {\lim }_{x \to a} g\left( x \right)$
$ = 0 + {e^{{\lim }_{x \to 0} \dfrac{{\tan x}}{x} \cdot {\lim }_{x \to 0} \sin x}}$
Apply the formula ${\lim }_{x \to 0} \dfrac{{\tan x}}{x} = 1$
$ = 0 + {e^{1 \cdot \sin 0}}$
$ = 0 + {e^0}$ since $\sin 0 = 0$
Now apply the formula ${e^0} = 1$.
$ = 0 + 1 = 1$
Option ‘C’ is correct
Note: In the given question first you need to apply the sum of limit formula to break it into two limits. You can put the value of limit in the first term because you will get a value that is zero. But if you limit the value in the second term, then you will not get a finite value. So that you are unable to put the value of the limit in the second term.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
