
For value of $k$, the points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic?
A. 4
B. 9
C. 6
D. 8
Answer
233.1k+ views
Hint: First, substitute the given points $\left( {0,0} \right),\left( {1,3} \right)$, and $\left( {2,4} \right)$ in the standard equation of a circle to calculate the values of $c,f$, and $g$. Then, simplify the standard equation of a circle by substituting the values. And in the end, substitute the point $\left( {k,3} \right)$ in the simplified equation of a circle and solve it to reach the required answer.
Formula Used:
The standard equation of a circle is: ${x^2} + {y^2} + 2gx + 2fy + c = 0$, where $\left( { - g, - f} \right)$ is the center of a circle.
Complete step by step solution:
Given: The points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic.
We know that if points are concyclic, then they lie on the same circle.
Substitute the point $\left( {0,0} \right)$ in the standard equation of a circle.
We get,
${0^2} + {0^2} + 2g\left( 0 \right) + 2f\left( 0 \right) + c = 0$
$ \Rightarrow c = 0$ $.....\left( 1 \right)$
Now substitute the point $\left( {1,3} \right)$ in the standard equation of a circle.
We get,
${1^2} + {3^2} + 2g\left( 1 \right) + 2f\left( 3 \right) = 0$
$ \Rightarrow 1 + 9 + 2g + 6f = 0$
$ \Rightarrow 10 + 2g + 6f = 0$ $.....\left( 2 \right)$
Now substitute the point $\left( {2,4} \right)$ in the standard equation of a circle.
We get,
${2^2} + {4^2} + 2g\left( 2 \right) + 2f\left( 4 \right) = 0$
$ \Rightarrow 4 + 16 + 4g + 8f = 0$
$ \Rightarrow 20 + 4g + 8f = 0$
Divide both sides by 2.
$10 + 2g + 4f = 0$
$ \Rightarrow 10 + 2g = - 4f$ $.....\left( 3 \right)$
Substitute the equation $\left( 3 \right)$ in the equation $\left( 2 \right)$.
$ - 4f + 6f = 0$
$ \Rightarrow 2f = 0$
$ \Rightarrow f = 0$ $.....\left( 4 \right)$
Substitute the equation $\left( 4 \right)$ in the equation $\left( 2 \right)$.
$10 + 2g + 6\left( 0 \right) = 0$
$ \Rightarrow 2g = - 10$
Divide both sides by 2.
$ \Rightarrow g = - 5$ $.....\left( 5 \right)$
Now substitute the equations $\left( 1 \right)$, $\left( 4 \right)$ and $\left( 5 \right)$ in the standard equation of a circle.
${x^2} + {y^2} + 2\left( { - 5} \right)x + 2\left( 0 \right)y + 0 = 0$
$ \Rightarrow {x^2} + {y^2} - 10x = 0$
Substitute the point $\left( {k,3} \right)$ in the above equation.
${k^2} + {3^2} - 10k = 0$
$ \Rightarrow {k^2} - 10k + 9 = 0$
Factorize the quadratic equation.
${k^2} - 9k - k + 9 = 0$
$ \Rightarrow k\left( {k - 9} \right) - \left( {k - 9} \right) = 0$
$ \Rightarrow \left( {k - 9} \right)\left( {k - 1} \right) = 0$
$ \Rightarrow k - 9 = 0$ or $k - 1 = 0$
$ \Rightarrow k = 9$ or $k = 1$
Thus, the values of $k$ are: $k = 1$ or $k = 9$
Option ‘B’ is correct
Note: Concyclic points are defined as any two or more points that lie on the common circle. All concyclic points are the same distance from the center of the circle.
Formula Used:
The standard equation of a circle is: ${x^2} + {y^2} + 2gx + 2fy + c = 0$, where $\left( { - g, - f} \right)$ is the center of a circle.
Complete step by step solution:
Given: The points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic.
We know that if points are concyclic, then they lie on the same circle.
Substitute the point $\left( {0,0} \right)$ in the standard equation of a circle.
We get,
${0^2} + {0^2} + 2g\left( 0 \right) + 2f\left( 0 \right) + c = 0$
$ \Rightarrow c = 0$ $.....\left( 1 \right)$
Now substitute the point $\left( {1,3} \right)$ in the standard equation of a circle.
We get,
${1^2} + {3^2} + 2g\left( 1 \right) + 2f\left( 3 \right) = 0$
$ \Rightarrow 1 + 9 + 2g + 6f = 0$
$ \Rightarrow 10 + 2g + 6f = 0$ $.....\left( 2 \right)$
Now substitute the point $\left( {2,4} \right)$ in the standard equation of a circle.
We get,
${2^2} + {4^2} + 2g\left( 2 \right) + 2f\left( 4 \right) = 0$
$ \Rightarrow 4 + 16 + 4g + 8f = 0$
$ \Rightarrow 20 + 4g + 8f = 0$
Divide both sides by 2.
$10 + 2g + 4f = 0$
$ \Rightarrow 10 + 2g = - 4f$ $.....\left( 3 \right)$
Substitute the equation $\left( 3 \right)$ in the equation $\left( 2 \right)$.
$ - 4f + 6f = 0$
$ \Rightarrow 2f = 0$
$ \Rightarrow f = 0$ $.....\left( 4 \right)$
Substitute the equation $\left( 4 \right)$ in the equation $\left( 2 \right)$.
$10 + 2g + 6\left( 0 \right) = 0$
$ \Rightarrow 2g = - 10$
Divide both sides by 2.
$ \Rightarrow g = - 5$ $.....\left( 5 \right)$
Now substitute the equations $\left( 1 \right)$, $\left( 4 \right)$ and $\left( 5 \right)$ in the standard equation of a circle.
${x^2} + {y^2} + 2\left( { - 5} \right)x + 2\left( 0 \right)y + 0 = 0$
$ \Rightarrow {x^2} + {y^2} - 10x = 0$
Substitute the point $\left( {k,3} \right)$ in the above equation.
${k^2} + {3^2} - 10k = 0$
$ \Rightarrow {k^2} - 10k + 9 = 0$
Factorize the quadratic equation.
${k^2} - 9k - k + 9 = 0$
$ \Rightarrow k\left( {k - 9} \right) - \left( {k - 9} \right) = 0$
$ \Rightarrow \left( {k - 9} \right)\left( {k - 1} \right) = 0$
$ \Rightarrow k - 9 = 0$ or $k - 1 = 0$
$ \Rightarrow k = 9$ or $k = 1$
Thus, the values of $k$ are: $k = 1$ or $k = 9$
Option ‘B’ is correct
Note: Concyclic points are defined as any two or more points that lie on the common circle. All concyclic points are the same distance from the center of the circle.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

