
For value of $k$, the points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic?
A. 4
B. 9
C. 6
D. 8
Answer
162k+ views
Hint: First, substitute the given points $\left( {0,0} \right),\left( {1,3} \right)$, and $\left( {2,4} \right)$ in the standard equation of a circle to calculate the values of $c,f$, and $g$. Then, simplify the standard equation of a circle by substituting the values. And in the end, substitute the point $\left( {k,3} \right)$ in the simplified equation of a circle and solve it to reach the required answer.
Formula Used:
The standard equation of a circle is: ${x^2} + {y^2} + 2gx + 2fy + c = 0$, where $\left( { - g, - f} \right)$ is the center of a circle.
Complete step by step solution:
Given: The points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic.
We know that if points are concyclic, then they lie on the same circle.
Substitute the point $\left( {0,0} \right)$ in the standard equation of a circle.
We get,
${0^2} + {0^2} + 2g\left( 0 \right) + 2f\left( 0 \right) + c = 0$
$ \Rightarrow c = 0$ $.....\left( 1 \right)$
Now substitute the point $\left( {1,3} \right)$ in the standard equation of a circle.
We get,
${1^2} + {3^2} + 2g\left( 1 \right) + 2f\left( 3 \right) = 0$
$ \Rightarrow 1 + 9 + 2g + 6f = 0$
$ \Rightarrow 10 + 2g + 6f = 0$ $.....\left( 2 \right)$
Now substitute the point $\left( {2,4} \right)$ in the standard equation of a circle.
We get,
${2^2} + {4^2} + 2g\left( 2 \right) + 2f\left( 4 \right) = 0$
$ \Rightarrow 4 + 16 + 4g + 8f = 0$
$ \Rightarrow 20 + 4g + 8f = 0$
Divide both sides by 2.
$10 + 2g + 4f = 0$
$ \Rightarrow 10 + 2g = - 4f$ $.....\left( 3 \right)$
Substitute the equation $\left( 3 \right)$ in the equation $\left( 2 \right)$.
$ - 4f + 6f = 0$
$ \Rightarrow 2f = 0$
$ \Rightarrow f = 0$ $.....\left( 4 \right)$
Substitute the equation $\left( 4 \right)$ in the equation $\left( 2 \right)$.
$10 + 2g + 6\left( 0 \right) = 0$
$ \Rightarrow 2g = - 10$
Divide both sides by 2.
$ \Rightarrow g = - 5$ $.....\left( 5 \right)$
Now substitute the equations $\left( 1 \right)$, $\left( 4 \right)$ and $\left( 5 \right)$ in the standard equation of a circle.
${x^2} + {y^2} + 2\left( { - 5} \right)x + 2\left( 0 \right)y + 0 = 0$
$ \Rightarrow {x^2} + {y^2} - 10x = 0$
Substitute the point $\left( {k,3} \right)$ in the above equation.
${k^2} + {3^2} - 10k = 0$
$ \Rightarrow {k^2} - 10k + 9 = 0$
Factorize the quadratic equation.
${k^2} - 9k - k + 9 = 0$
$ \Rightarrow k\left( {k - 9} \right) - \left( {k - 9} \right) = 0$
$ \Rightarrow \left( {k - 9} \right)\left( {k - 1} \right) = 0$
$ \Rightarrow k - 9 = 0$ or $k - 1 = 0$
$ \Rightarrow k = 9$ or $k = 1$
Thus, the values of $k$ are: $k = 1$ or $k = 9$
Option ‘B’ is correct
Note: Concyclic points are defined as any two or more points that lie on the common circle. All concyclic points are the same distance from the center of the circle.
Formula Used:
The standard equation of a circle is: ${x^2} + {y^2} + 2gx + 2fy + c = 0$, where $\left( { - g, - f} \right)$ is the center of a circle.
Complete step by step solution:
Given: The points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic.
We know that if points are concyclic, then they lie on the same circle.
Substitute the point $\left( {0,0} \right)$ in the standard equation of a circle.
We get,
${0^2} + {0^2} + 2g\left( 0 \right) + 2f\left( 0 \right) + c = 0$
$ \Rightarrow c = 0$ $.....\left( 1 \right)$
Now substitute the point $\left( {1,3} \right)$ in the standard equation of a circle.
We get,
${1^2} + {3^2} + 2g\left( 1 \right) + 2f\left( 3 \right) = 0$
$ \Rightarrow 1 + 9 + 2g + 6f = 0$
$ \Rightarrow 10 + 2g + 6f = 0$ $.....\left( 2 \right)$
Now substitute the point $\left( {2,4} \right)$ in the standard equation of a circle.
We get,
${2^2} + {4^2} + 2g\left( 2 \right) + 2f\left( 4 \right) = 0$
$ \Rightarrow 4 + 16 + 4g + 8f = 0$
$ \Rightarrow 20 + 4g + 8f = 0$
Divide both sides by 2.
$10 + 2g + 4f = 0$
$ \Rightarrow 10 + 2g = - 4f$ $.....\left( 3 \right)$
Substitute the equation $\left( 3 \right)$ in the equation $\left( 2 \right)$.
$ - 4f + 6f = 0$
$ \Rightarrow 2f = 0$
$ \Rightarrow f = 0$ $.....\left( 4 \right)$
Substitute the equation $\left( 4 \right)$ in the equation $\left( 2 \right)$.
$10 + 2g + 6\left( 0 \right) = 0$
$ \Rightarrow 2g = - 10$
Divide both sides by 2.
$ \Rightarrow g = - 5$ $.....\left( 5 \right)$
Now substitute the equations $\left( 1 \right)$, $\left( 4 \right)$ and $\left( 5 \right)$ in the standard equation of a circle.
${x^2} + {y^2} + 2\left( { - 5} \right)x + 2\left( 0 \right)y + 0 = 0$
$ \Rightarrow {x^2} + {y^2} - 10x = 0$
Substitute the point $\left( {k,3} \right)$ in the above equation.
${k^2} + {3^2} - 10k = 0$
$ \Rightarrow {k^2} - 10k + 9 = 0$
Factorize the quadratic equation.
${k^2} - 9k - k + 9 = 0$
$ \Rightarrow k\left( {k - 9} \right) - \left( {k - 9} \right) = 0$
$ \Rightarrow \left( {k - 9} \right)\left( {k - 1} \right) = 0$
$ \Rightarrow k - 9 = 0$ or $k - 1 = 0$
$ \Rightarrow k = 9$ or $k = 1$
Thus, the values of $k$ are: $k = 1$ or $k = 9$
Option ‘B’ is correct
Note: Concyclic points are defined as any two or more points that lie on the common circle. All concyclic points are the same distance from the center of the circle.
Recently Updated Pages
How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Difference Between Acetic Acid and Glacial Acetic Acid: JEE Main 2024

Trending doubts
JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

JEE Main B.Arch Cut Off Percentile 2025

JoSAA Counselling 2025: Registration Dates OUT, Eligibility Criteria, Cutoffs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

List of Fastest Century in IPL History

NEET 2025 – Every New Update You Need to Know
