
For value of $k$, the points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic?
A. 4
B. 9
C. 6
D. 8
Answer
218.4k+ views
Hint: First, substitute the given points $\left( {0,0} \right),\left( {1,3} \right)$, and $\left( {2,4} \right)$ in the standard equation of a circle to calculate the values of $c,f$, and $g$. Then, simplify the standard equation of a circle by substituting the values. And in the end, substitute the point $\left( {k,3} \right)$ in the simplified equation of a circle and solve it to reach the required answer.
Formula Used:
The standard equation of a circle is: ${x^2} + {y^2} + 2gx + 2fy + c = 0$, where $\left( { - g, - f} \right)$ is the center of a circle.
Complete step by step solution:
Given: The points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic.
We know that if points are concyclic, then they lie on the same circle.
Substitute the point $\left( {0,0} \right)$ in the standard equation of a circle.
We get,
${0^2} + {0^2} + 2g\left( 0 \right) + 2f\left( 0 \right) + c = 0$
$ \Rightarrow c = 0$ $.....\left( 1 \right)$
Now substitute the point $\left( {1,3} \right)$ in the standard equation of a circle.
We get,
${1^2} + {3^2} + 2g\left( 1 \right) + 2f\left( 3 \right) = 0$
$ \Rightarrow 1 + 9 + 2g + 6f = 0$
$ \Rightarrow 10 + 2g + 6f = 0$ $.....\left( 2 \right)$
Now substitute the point $\left( {2,4} \right)$ in the standard equation of a circle.
We get,
${2^2} + {4^2} + 2g\left( 2 \right) + 2f\left( 4 \right) = 0$
$ \Rightarrow 4 + 16 + 4g + 8f = 0$
$ \Rightarrow 20 + 4g + 8f = 0$
Divide both sides by 2.
$10 + 2g + 4f = 0$
$ \Rightarrow 10 + 2g = - 4f$ $.....\left( 3 \right)$
Substitute the equation $\left( 3 \right)$ in the equation $\left( 2 \right)$.
$ - 4f + 6f = 0$
$ \Rightarrow 2f = 0$
$ \Rightarrow f = 0$ $.....\left( 4 \right)$
Substitute the equation $\left( 4 \right)$ in the equation $\left( 2 \right)$.
$10 + 2g + 6\left( 0 \right) = 0$
$ \Rightarrow 2g = - 10$
Divide both sides by 2.
$ \Rightarrow g = - 5$ $.....\left( 5 \right)$
Now substitute the equations $\left( 1 \right)$, $\left( 4 \right)$ and $\left( 5 \right)$ in the standard equation of a circle.
${x^2} + {y^2} + 2\left( { - 5} \right)x + 2\left( 0 \right)y + 0 = 0$
$ \Rightarrow {x^2} + {y^2} - 10x = 0$
Substitute the point $\left( {k,3} \right)$ in the above equation.
${k^2} + {3^2} - 10k = 0$
$ \Rightarrow {k^2} - 10k + 9 = 0$
Factorize the quadratic equation.
${k^2} - 9k - k + 9 = 0$
$ \Rightarrow k\left( {k - 9} \right) - \left( {k - 9} \right) = 0$
$ \Rightarrow \left( {k - 9} \right)\left( {k - 1} \right) = 0$
$ \Rightarrow k - 9 = 0$ or $k - 1 = 0$
$ \Rightarrow k = 9$ or $k = 1$
Thus, the values of $k$ are: $k = 1$ or $k = 9$
Option ‘B’ is correct
Note: Concyclic points are defined as any two or more points that lie on the common circle. All concyclic points are the same distance from the center of the circle.
Formula Used:
The standard equation of a circle is: ${x^2} + {y^2} + 2gx + 2fy + c = 0$, where $\left( { - g, - f} \right)$ is the center of a circle.
Complete step by step solution:
Given: The points $\left( {0,0} \right),\left( {1,3} \right),\left( {2,4} \right)$, and $\left( {k,3} \right)$ are concyclic.
We know that if points are concyclic, then they lie on the same circle.
Substitute the point $\left( {0,0} \right)$ in the standard equation of a circle.
We get,
${0^2} + {0^2} + 2g\left( 0 \right) + 2f\left( 0 \right) + c = 0$
$ \Rightarrow c = 0$ $.....\left( 1 \right)$
Now substitute the point $\left( {1,3} \right)$ in the standard equation of a circle.
We get,
${1^2} + {3^2} + 2g\left( 1 \right) + 2f\left( 3 \right) = 0$
$ \Rightarrow 1 + 9 + 2g + 6f = 0$
$ \Rightarrow 10 + 2g + 6f = 0$ $.....\left( 2 \right)$
Now substitute the point $\left( {2,4} \right)$ in the standard equation of a circle.
We get,
${2^2} + {4^2} + 2g\left( 2 \right) + 2f\left( 4 \right) = 0$
$ \Rightarrow 4 + 16 + 4g + 8f = 0$
$ \Rightarrow 20 + 4g + 8f = 0$
Divide both sides by 2.
$10 + 2g + 4f = 0$
$ \Rightarrow 10 + 2g = - 4f$ $.....\left( 3 \right)$
Substitute the equation $\left( 3 \right)$ in the equation $\left( 2 \right)$.
$ - 4f + 6f = 0$
$ \Rightarrow 2f = 0$
$ \Rightarrow f = 0$ $.....\left( 4 \right)$
Substitute the equation $\left( 4 \right)$ in the equation $\left( 2 \right)$.
$10 + 2g + 6\left( 0 \right) = 0$
$ \Rightarrow 2g = - 10$
Divide both sides by 2.
$ \Rightarrow g = - 5$ $.....\left( 5 \right)$
Now substitute the equations $\left( 1 \right)$, $\left( 4 \right)$ and $\left( 5 \right)$ in the standard equation of a circle.
${x^2} + {y^2} + 2\left( { - 5} \right)x + 2\left( 0 \right)y + 0 = 0$
$ \Rightarrow {x^2} + {y^2} - 10x = 0$
Substitute the point $\left( {k,3} \right)$ in the above equation.
${k^2} + {3^2} - 10k = 0$
$ \Rightarrow {k^2} - 10k + 9 = 0$
Factorize the quadratic equation.
${k^2} - 9k - k + 9 = 0$
$ \Rightarrow k\left( {k - 9} \right) - \left( {k - 9} \right) = 0$
$ \Rightarrow \left( {k - 9} \right)\left( {k - 1} \right) = 0$
$ \Rightarrow k - 9 = 0$ or $k - 1 = 0$
$ \Rightarrow k = 9$ or $k = 1$
Thus, the values of $k$ are: $k = 1$ or $k = 9$
Option ‘B’ is correct
Note: Concyclic points are defined as any two or more points that lie on the common circle. All concyclic points are the same distance from the center of the circle.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Square vs Rectangle: Key Differences Explained Simply

Line vs Line Segment: Key Differences Explained for Students

Cube vs Cuboid: Key Differences Explained for Students

Highest Number of Students Appeared in JEE Main 2024 | NTA Data

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

