
Find the value of the series \[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
A.\[\dfrac{\pi }{4}\]
B.\[\dfrac{\pi }{3}\]
C.\[\dfrac{\pi }{2}\]
D.\[\dfrac{\pi }{5}\]
Answer
232.8k+ views
Hint First write the nth term of the given series. Then convert the nth term to tangent function. Then set the obtained expression in the form \[{\tan ^{ - 1}}(\dfrac{{A + B}}{{1 - AB}})\] so that we can write it as \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B\] and then substitute the values for \[n = 1,2,3,...\] and calculate to obtain the required result.
Formula Used:
1.\[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\]
2. \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
3.\[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\]
4.\[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\]
Complete step by step solution
The given series is,
\[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
\[ = \sum\limits_{n = 1}^\infty {{{\cot }^{ - 1}}\left( {2.{n^2}} \right)} \]
Use the formula \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\] to convert the expression into a tangent function.
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{n^2}}}} \right)} \]
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{(1 + 2n) + (1 - 2n)}}{{1 - (1 + 2n)(1 - 2n)}}} \right)} \]
Use the formula \[{\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right) = {\tan ^{ - 1}}A + {\tan ^{ - 1}}B\]for further calculation.
\[ = \sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\]
Substitute the values for \[n = 1,2,3,...\]in the expression \[\sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\] to obtain the required answer.
\[ = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}5 - {\tan ^{ - 1}}3 + {\tan ^{ - 1}}7 - {\tan ^{ - 1}}5 + .... + {\tan ^{ - 1}}\infty \]
\[ = - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}\infty \]
Put \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and \[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\] and calculate.
\[ = - \dfrac{\pi }{4} + \dfrac{\pi }{2}\]
\[ = \dfrac{\pi }{4}\]
The correct option is A.
Note When we are solving this type of problems we use a lot of formulas in one question, so to solve this type of problems students must have the knowledge of these formulas otherwise they will not be unable to solve these problems.
Formula Used:
1.\[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\]
2. \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
3.\[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\]
4.\[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\]
Complete step by step solution
The given series is,
\[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
\[ = \sum\limits_{n = 1}^\infty {{{\cot }^{ - 1}}\left( {2.{n^2}} \right)} \]
Use the formula \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\] to convert the expression into a tangent function.
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{n^2}}}} \right)} \]
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{(1 + 2n) + (1 - 2n)}}{{1 - (1 + 2n)(1 - 2n)}}} \right)} \]
Use the formula \[{\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right) = {\tan ^{ - 1}}A + {\tan ^{ - 1}}B\]for further calculation.
\[ = \sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\]
Substitute the values for \[n = 1,2,3,...\]in the expression \[\sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\] to obtain the required answer.
\[ = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}5 - {\tan ^{ - 1}}3 + {\tan ^{ - 1}}7 - {\tan ^{ - 1}}5 + .... + {\tan ^{ - 1}}\infty \]
\[ = - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}\infty \]
Put \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and \[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\] and calculate.
\[ = - \dfrac{\pi }{4} + \dfrac{\pi }{2}\]
\[ = \dfrac{\pi }{4}\]
The correct option is A.
Note When we are solving this type of problems we use a lot of formulas in one question, so to solve this type of problems students must have the knowledge of these formulas otherwise they will not be unable to solve these problems.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

