
Find the value of the series \[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
A.\[\dfrac{\pi }{4}\]
B.\[\dfrac{\pi }{3}\]
C.\[\dfrac{\pi }{2}\]
D.\[\dfrac{\pi }{5}\]
Answer
162k+ views
Hint First write the nth term of the given series. Then convert the nth term to tangent function. Then set the obtained expression in the form \[{\tan ^{ - 1}}(\dfrac{{A + B}}{{1 - AB}})\] so that we can write it as \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B\] and then substitute the values for \[n = 1,2,3,...\] and calculate to obtain the required result.
Formula Used:
1.\[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\]
2. \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
3.\[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\]
4.\[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\]
Complete step by step solution
The given series is,
\[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
\[ = \sum\limits_{n = 1}^\infty {{{\cot }^{ - 1}}\left( {2.{n^2}} \right)} \]
Use the formula \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\] to convert the expression into a tangent function.
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{n^2}}}} \right)} \]
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{(1 + 2n) + (1 - 2n)}}{{1 - (1 + 2n)(1 - 2n)}}} \right)} \]
Use the formula \[{\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right) = {\tan ^{ - 1}}A + {\tan ^{ - 1}}B\]for further calculation.
\[ = \sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\]
Substitute the values for \[n = 1,2,3,...\]in the expression \[\sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\] to obtain the required answer.
\[ = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}5 - {\tan ^{ - 1}}3 + {\tan ^{ - 1}}7 - {\tan ^{ - 1}}5 + .... + {\tan ^{ - 1}}\infty \]
\[ = - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}\infty \]
Put \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and \[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\] and calculate.
\[ = - \dfrac{\pi }{4} + \dfrac{\pi }{2}\]
\[ = \dfrac{\pi }{4}\]
The correct option is A.
Note When we are solving this type of problems we use a lot of formulas in one question, so to solve this type of problems students must have the knowledge of these formulas otherwise they will not be unable to solve these problems.
Formula Used:
1.\[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\]
2. \[{\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)\]
3.\[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\]
4.\[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\]
Complete step by step solution
The given series is,
\[{\cot ^{ - 1}}({2.1^2}) + {\cot ^{ - 1}}({2.2^2}) + {\cot ^{ - 1}}({2.3^2}) + ...\infty \]
\[ = \sum\limits_{n = 1}^\infty {{{\cot }^{ - 1}}\left( {2.{n^2}} \right)} \]
Use the formula \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{1}{x}\] to convert the expression into a tangent function.
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{n^2}}}} \right)} \]
\[ = \sum\limits_{n = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{(1 + 2n) + (1 - 2n)}}{{1 - (1 + 2n)(1 - 2n)}}} \right)} \]
Use the formula \[{\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right) = {\tan ^{ - 1}}A + {\tan ^{ - 1}}B\]for further calculation.
\[ = \sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\]
Substitute the values for \[n = 1,2,3,...\]in the expression \[\sum\limits_{n = 1}^\infty {[{{\tan }^{ - 1}}\left( {1 + 2n} \right)} + {\tan ^{ - 1}}\left( {1 - 2n} \right)]\] to obtain the required answer.
\[ = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}5 - {\tan ^{ - 1}}3 + {\tan ^{ - 1}}7 - {\tan ^{ - 1}}5 + .... + {\tan ^{ - 1}}\infty \]
\[ = - {\tan ^{ - 1}}1 + {\tan ^{ - 1}}\infty \]
Put \[{\tan ^{ - 1}}1 = \dfrac{\pi }{4}\] and \[{\tan ^{ - 1}}\infty = \dfrac{\pi }{2}\] and calculate.
\[ = - \dfrac{\pi }{4} + \dfrac{\pi }{2}\]
\[ = \dfrac{\pi }{4}\]
The correct option is A.
Note When we are solving this type of problems we use a lot of formulas in one question, so to solve this type of problems students must have the knowledge of these formulas otherwise they will not be unable to solve these problems.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
