
Find the value of $\tan {1^ \circ }\tan {2^ \circ }\tan {3^ \circ }.......\tan {89^ \circ }$
from the options given below
A. 0
B. 1
C. 2
D. 3
Answer
219k+ views
Hint-Here, let us try to solve this question by making use of the formula
$\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and solve
By making use of the formula $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $,we
can write
$\tan {89^ \circ }$= $\tan ({90^ \circ } - {1^ \circ }) = \cot {1^ \circ }$
Similarly we can write
tan${88^ \circ }$ =$\tan ({90^ \circ } - {2^ \circ }) = \cot {2^ \circ }$
On proceeding in a similar manner we can write the value of tan in terms of cot upto
$\tan {46^ \circ }$ and the value of $\tan {45^ \circ }$ is retained as it is and not converted to
cot. This is
because if we pair $\tan {89^ \circ }$,$\tan {1^ \circ }$ ; $\tan {2^ \circ },\tan {88^ \circ }$ ;we can pair them up to $\tan {44^ \circ }\tan {46^ \circ }$
and finally $\tan {45^ \circ }$ will remain unpaired with any other element.
So, now the equation becomes $(\tan {1^ \circ }\cot {1^ \circ })(\tan {2^ \circ }\cot {2^ \circ
}).....(\tan {44^ \circ }\cot {44^ \circ })(\tan {45^ \circ })$
Since tan and cot are reciprocals of each other $(\tan {1^ \circ }\cot {1^ \circ })(\tan {2^ \circ
}\cot {2^ \circ })...$ will cancel out
and will become 1 and the value of $\tan {45^ \circ }$ will also become 1.
So, the equation will now be equal to (1)(1)……..(1)(1)=1
So, therefore the value of $\tan {1^ \circ }\tan {2^ \circ }\tan {3^ \circ }.......\tan {89^ \circ
}$=1 $$ $$
Note: To solve these kind of problems we will make use of the complementary angle formula
of the trigonometric ratios
$\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $ and solve
By making use of the formula $\tan \left( {{{90}^ \circ } - \theta } \right) = \cot \theta $,we
can write
$\tan {89^ \circ }$= $\tan ({90^ \circ } - {1^ \circ }) = \cot {1^ \circ }$
Similarly we can write
tan${88^ \circ }$ =$\tan ({90^ \circ } - {2^ \circ }) = \cot {2^ \circ }$
On proceeding in a similar manner we can write the value of tan in terms of cot upto
$\tan {46^ \circ }$ and the value of $\tan {45^ \circ }$ is retained as it is and not converted to
cot. This is
because if we pair $\tan {89^ \circ }$,$\tan {1^ \circ }$ ; $\tan {2^ \circ },\tan {88^ \circ }$ ;we can pair them up to $\tan {44^ \circ }\tan {46^ \circ }$
and finally $\tan {45^ \circ }$ will remain unpaired with any other element.
So, now the equation becomes $(\tan {1^ \circ }\cot {1^ \circ })(\tan {2^ \circ }\cot {2^ \circ
}).....(\tan {44^ \circ }\cot {44^ \circ })(\tan {45^ \circ })$
Since tan and cot are reciprocals of each other $(\tan {1^ \circ }\cot {1^ \circ })(\tan {2^ \circ
}\cot {2^ \circ })...$ will cancel out
and will become 1 and the value of $\tan {45^ \circ }$ will also become 1.
So, the equation will now be equal to (1)(1)……..(1)(1)=1
So, therefore the value of $\tan {1^ \circ }\tan {2^ \circ }\tan {3^ \circ }.......\tan {89^ \circ
}$=1 $$ $$
Note: To solve these kind of problems we will make use of the complementary angle formula
of the trigonometric ratios
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
Understanding Average and RMS Value in Electrical Circuits

Common Ion Effect: Concept, Applications, and Problem-Solving

NCERT Solutions For Class 11 Maths Chapter 13 Statistics - 2025-26

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

