
Find the value of \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
A. \[\dfrac{1}{10}\]
B. \[0\]
C. \[\dfrac{1}{5}\]
D. \[\dfrac{3}{10}\]
Answer
214.8k+ views
Hint: In this question, we need to find the value of the limit\[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]. For this, we will divide numerator and denominator by $x^2$ and simplify the limit to get the desired result.
Complete step-by-step solution:
We know that \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
Let \[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
Let us simplify this.
By dividing \[{x^2}\] to the numerator and the denominator, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{{x^2}}}}}{{\dfrac{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}{{{x^2}}}}}\]
By separating the denominator, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\dfrac{{\left( {2x - 3} \right)}}{x}\dfrac{{\left( {3x{\text{ }} - {\text{ }}4} \right)}}{x}}}{{\dfrac{{\left( {4x - 5} \right)}}{x}\dfrac{{\left( {5x - 6} \right)}}{x}}}\]
By simplifying, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {\dfrac{{2x}}{x} - \dfrac{3}{x}} \right)\left( {\dfrac{{3x}}{x} - \dfrac{4}{x}} \right)}}{{\left( {\dfrac{{4x}}{x} - \dfrac{5}{x}} \right)\left( {\dfrac{{5x}}{x} - \dfrac{6}{x}} \right)}}\]
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2 - \dfrac{3}{x}} \right)\left( {3 - \dfrac{4}{x}} \right)}}{{\left( {4 - \dfrac{5}{x}} \right)\left( {5 - \dfrac{6}{x}} \right)}}\]
By putting\[x = \infty \], in the above equation, we get
\[L = \;\dfrac{{\left( {2 - \dfrac{3}{\infty }} \right)\left( {3 - \dfrac{4}{\infty }} \right)}}{{\left( {4 - \dfrac{5}{\infty }} \right)\left( {5 - \dfrac{6}{\infty }} \right)}}\]
Let us simplify it further.
So, we get
\[L = \;\dfrac{{\left( {2 - 3\left( {\dfrac{1}{\infty }} \right)} \right)\left( {3 - 4\left( {\dfrac{1}{\infty }} \right)} \right)}}{{\left( {4 - 5\left( {\dfrac{1}{\infty }} \right)} \right)\left( {5 - 6\left( {\dfrac{1}{\infty }} \right)} \right)}}\]
But we know that \[\dfrac{1}{\infty } = 0\]
Thus, we get
\[L = \;\dfrac{{\left( {2 - 3\left( 0 \right)} \right)\left( {3 - 4\left( 0 \right)} \right)}}{{\left( {4 - 5\left( 0 \right)} \right)\left( {5 - 6\left( 0 \right)} \right)}}\]
\[L = \;\dfrac{{\left( {2 - 0} \right)\left( {3 - 0} \right)}}{{\left( {4 - 0} \right)\left( {5 - 0} \right)}}\]
\[L = \;\dfrac{{\left( 2 \right)\left( 3 \right)}}{{\left( 4 \right)\left( 5 \right)}}\]
By simplifying it further, we get
\[L = \;\dfrac{6}{{20}}\]
\[L = \;\dfrac{3}{{10}}\]
That is, we can say that
\[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}} = \dfrac{3}{{10}}\]
Hence, the value of the limit \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\] is \[\dfrac{3}{{10}}\].
Therefore, the correct option is (D).
Note: Many students generally make mistakes in solving the limit. They make take infinity for the ratio of \[\dfrac{1}{\infty }\]. If so, they may get the wrong end result. Here, the main trick to solve this question is to divide the numerator and the denominator of the given limit by \[{x^2}\] to get the correct result.
Complete step-by-step solution:
We know that \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
Let \[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
Let us simplify this.
By dividing \[{x^2}\] to the numerator and the denominator, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{{x^2}}}}}{{\dfrac{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}{{{x^2}}}}}\]
By separating the denominator, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\dfrac{{\left( {2x - 3} \right)}}{x}\dfrac{{\left( {3x{\text{ }} - {\text{ }}4} \right)}}{x}}}{{\dfrac{{\left( {4x - 5} \right)}}{x}\dfrac{{\left( {5x - 6} \right)}}{x}}}\]
By simplifying, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {\dfrac{{2x}}{x} - \dfrac{3}{x}} \right)\left( {\dfrac{{3x}}{x} - \dfrac{4}{x}} \right)}}{{\left( {\dfrac{{4x}}{x} - \dfrac{5}{x}} \right)\left( {\dfrac{{5x}}{x} - \dfrac{6}{x}} \right)}}\]
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2 - \dfrac{3}{x}} \right)\left( {3 - \dfrac{4}{x}} \right)}}{{\left( {4 - \dfrac{5}{x}} \right)\left( {5 - \dfrac{6}{x}} \right)}}\]
By putting\[x = \infty \], in the above equation, we get
\[L = \;\dfrac{{\left( {2 - \dfrac{3}{\infty }} \right)\left( {3 - \dfrac{4}{\infty }} \right)}}{{\left( {4 - \dfrac{5}{\infty }} \right)\left( {5 - \dfrac{6}{\infty }} \right)}}\]
Let us simplify it further.
So, we get
\[L = \;\dfrac{{\left( {2 - 3\left( {\dfrac{1}{\infty }} \right)} \right)\left( {3 - 4\left( {\dfrac{1}{\infty }} \right)} \right)}}{{\left( {4 - 5\left( {\dfrac{1}{\infty }} \right)} \right)\left( {5 - 6\left( {\dfrac{1}{\infty }} \right)} \right)}}\]
But we know that \[\dfrac{1}{\infty } = 0\]
Thus, we get
\[L = \;\dfrac{{\left( {2 - 3\left( 0 \right)} \right)\left( {3 - 4\left( 0 \right)} \right)}}{{\left( {4 - 5\left( 0 \right)} \right)\left( {5 - 6\left( 0 \right)} \right)}}\]
\[L = \;\dfrac{{\left( {2 - 0} \right)\left( {3 - 0} \right)}}{{\left( {4 - 0} \right)\left( {5 - 0} \right)}}\]
\[L = \;\dfrac{{\left( 2 \right)\left( 3 \right)}}{{\left( 4 \right)\left( 5 \right)}}\]
By simplifying it further, we get
\[L = \;\dfrac{6}{{20}}\]
\[L = \;\dfrac{3}{{10}}\]
That is, we can say that
\[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}} = \dfrac{3}{{10}}\]
Hence, the value of the limit \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\] is \[\dfrac{3}{{10}}\].
Therefore, the correct option is (D).
Note: Many students generally make mistakes in solving the limit. They make take infinity for the ratio of \[\dfrac{1}{\infty }\]. If so, they may get the wrong end result. Here, the main trick to solve this question is to divide the numerator and the denominator of the given limit by \[{x^2}\] to get the correct result.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

