
Find the value of \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
A. \[\dfrac{1}{10}\]
B. \[0\]
C. \[\dfrac{1}{5}\]
D. \[\dfrac{3}{10}\]
Answer
216k+ views
Hint: In this question, we need to find the value of the limit\[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]. For this, we will divide numerator and denominator by $x^2$ and simplify the limit to get the desired result.
Complete step-by-step solution:
We know that \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
Let \[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
Let us simplify this.
By dividing \[{x^2}\] to the numerator and the denominator, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{{x^2}}}}}{{\dfrac{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}{{{x^2}}}}}\]
By separating the denominator, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\dfrac{{\left( {2x - 3} \right)}}{x}\dfrac{{\left( {3x{\text{ }} - {\text{ }}4} \right)}}{x}}}{{\dfrac{{\left( {4x - 5} \right)}}{x}\dfrac{{\left( {5x - 6} \right)}}{x}}}\]
By simplifying, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {\dfrac{{2x}}{x} - \dfrac{3}{x}} \right)\left( {\dfrac{{3x}}{x} - \dfrac{4}{x}} \right)}}{{\left( {\dfrac{{4x}}{x} - \dfrac{5}{x}} \right)\left( {\dfrac{{5x}}{x} - \dfrac{6}{x}} \right)}}\]
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2 - \dfrac{3}{x}} \right)\left( {3 - \dfrac{4}{x}} \right)}}{{\left( {4 - \dfrac{5}{x}} \right)\left( {5 - \dfrac{6}{x}} \right)}}\]
By putting\[x = \infty \], in the above equation, we get
\[L = \;\dfrac{{\left( {2 - \dfrac{3}{\infty }} \right)\left( {3 - \dfrac{4}{\infty }} \right)}}{{\left( {4 - \dfrac{5}{\infty }} \right)\left( {5 - \dfrac{6}{\infty }} \right)}}\]
Let us simplify it further.
So, we get
\[L = \;\dfrac{{\left( {2 - 3\left( {\dfrac{1}{\infty }} \right)} \right)\left( {3 - 4\left( {\dfrac{1}{\infty }} \right)} \right)}}{{\left( {4 - 5\left( {\dfrac{1}{\infty }} \right)} \right)\left( {5 - 6\left( {\dfrac{1}{\infty }} \right)} \right)}}\]
But we know that \[\dfrac{1}{\infty } = 0\]
Thus, we get
\[L = \;\dfrac{{\left( {2 - 3\left( 0 \right)} \right)\left( {3 - 4\left( 0 \right)} \right)}}{{\left( {4 - 5\left( 0 \right)} \right)\left( {5 - 6\left( 0 \right)} \right)}}\]
\[L = \;\dfrac{{\left( {2 - 0} \right)\left( {3 - 0} \right)}}{{\left( {4 - 0} \right)\left( {5 - 0} \right)}}\]
\[L = \;\dfrac{{\left( 2 \right)\left( 3 \right)}}{{\left( 4 \right)\left( 5 \right)}}\]
By simplifying it further, we get
\[L = \;\dfrac{6}{{20}}\]
\[L = \;\dfrac{3}{{10}}\]
That is, we can say that
\[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}} = \dfrac{3}{{10}}\]
Hence, the value of the limit \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\] is \[\dfrac{3}{{10}}\].
Therefore, the correct option is (D).
Note: Many students generally make mistakes in solving the limit. They make take infinity for the ratio of \[\dfrac{1}{\infty }\]. If so, they may get the wrong end result. Here, the main trick to solve this question is to divide the numerator and the denominator of the given limit by \[{x^2}\] to get the correct result.
Complete step-by-step solution:
We know that \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
Let \[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\]
Let us simplify this.
By dividing \[{x^2}\] to the numerator and the denominator, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{{x^2}}}}}{{\dfrac{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}{{{x^2}}}}}\]
By separating the denominator, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\dfrac{{\left( {2x - 3} \right)}}{x}\dfrac{{\left( {3x{\text{ }} - {\text{ }}4} \right)}}{x}}}{{\dfrac{{\left( {4x - 5} \right)}}{x}\dfrac{{\left( {5x - 6} \right)}}{x}}}\]
By simplifying, we get
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {\dfrac{{2x}}{x} - \dfrac{3}{x}} \right)\left( {\dfrac{{3x}}{x} - \dfrac{4}{x}} \right)}}{{\left( {\dfrac{{4x}}{x} - \dfrac{5}{x}} \right)\left( {\dfrac{{5x}}{x} - \dfrac{6}{x}} \right)}}\]
\[L = \mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2 - \dfrac{3}{x}} \right)\left( {3 - \dfrac{4}{x}} \right)}}{{\left( {4 - \dfrac{5}{x}} \right)\left( {5 - \dfrac{6}{x}} \right)}}\]
By putting\[x = \infty \], in the above equation, we get
\[L = \;\dfrac{{\left( {2 - \dfrac{3}{\infty }} \right)\left( {3 - \dfrac{4}{\infty }} \right)}}{{\left( {4 - \dfrac{5}{\infty }} \right)\left( {5 - \dfrac{6}{\infty }} \right)}}\]
Let us simplify it further.
So, we get
\[L = \;\dfrac{{\left( {2 - 3\left( {\dfrac{1}{\infty }} \right)} \right)\left( {3 - 4\left( {\dfrac{1}{\infty }} \right)} \right)}}{{\left( {4 - 5\left( {\dfrac{1}{\infty }} \right)} \right)\left( {5 - 6\left( {\dfrac{1}{\infty }} \right)} \right)}}\]
But we know that \[\dfrac{1}{\infty } = 0\]
Thus, we get
\[L = \;\dfrac{{\left( {2 - 3\left( 0 \right)} \right)\left( {3 - 4\left( 0 \right)} \right)}}{{\left( {4 - 5\left( 0 \right)} \right)\left( {5 - 6\left( 0 \right)} \right)}}\]
\[L = \;\dfrac{{\left( {2 - 0} \right)\left( {3 - 0} \right)}}{{\left( {4 - 0} \right)\left( {5 - 0} \right)}}\]
\[L = \;\dfrac{{\left( 2 \right)\left( 3 \right)}}{{\left( 4 \right)\left( 5 \right)}}\]
By simplifying it further, we get
\[L = \;\dfrac{6}{{20}}\]
\[L = \;\dfrac{3}{{10}}\]
That is, we can say that
\[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}} = \dfrac{3}{{10}}\]
Hence, the value of the limit \[\mathop {\lim }\limits_{x \to \infty } \;\dfrac{{\left( {2x - 3} \right)\left( {3x{\text{ }} - {\text{ }}4} \right)}}{{\left( {4x - 5} \right)\left( {5x - 6} \right)}}\] is \[\dfrac{3}{{10}}\].
Therefore, the correct option is (D).
Note: Many students generally make mistakes in solving the limit. They make take infinity for the ratio of \[\dfrac{1}{\infty }\]. If so, they may get the wrong end result. Here, the main trick to solve this question is to divide the numerator and the denominator of the given limit by \[{x^2}\] to get the correct result.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

