
Find the value of \[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2}\].
A. 4
B. \[ - 4\]
C. 5
D. \[ - 5\]
Answer
233.1k+ views
Hint In the given question, one expression is given which contains the imaginary number \[i\]. We will rewrite the \[{i^{19}}\] such that \[{i^{16}} \cdot {i^3}\] and plug the value of \[{i^{16}}\] and \[{i^3}\]. In the second term, first we will apply the indices property that is \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]. Then we simplify the denominator only because \[{1^n} = 1\] for any natural number \[n\]. Again rewrite \[{i^{25}}\] as \[{i^{24}} \cdot i\] and put \[{i^{24}} = 1\]. Then rewrite 1 as \[{i^4}\]. Then cancel out the common term and simplify the expression \[{\left( { - i + {i^3}} \right)^2}\]. We know that \[{i^3} = - i\]. So the expression becomes \[{\left( { - 2i} \right)^2}\]. Now we can easily derive the value \[{\left( { - 2i} \right)^2}\].
Formula used:
The values of various powers of imaginary number \[i = \sqrt { - 1} \] are:
\[i = \sqrt { - 1} \]
\[{i^2} = - 1\]
\[{i^3} = - i\]
\[{i^4} = 1\]
Complete step by step solution:
The given expression is \[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2}\].
Let’s simplify the given expression.
\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( {{i^{16}} \times {i^3} + \left( {\dfrac{{{1^{25}}}}{{{i^{24}} \times i}}} \right)} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( {\left( 1 \right) \cdot \left( { - i} \right) + \left( {\dfrac{1}{{\left( 1 \right) \cdot i}}} \right)} \right)^2}\] [Since, \[{i^4} = 1\] and \[{i^3} = - i\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + \dfrac{1}{i}} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + \dfrac{{{i^4}}}{i}} \right)^2}\] [Since, \[{i^4} = 1\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + {i^3}} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i - i} \right)^2}\] [Since, \[{i^3} = - i\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - 2i} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = 4{i^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = 4\left( { - 1} \right)\] [Since, \[{i^2} = - 1\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = - 4\]
Hence the correct option is option B.
Note: Students are often confused with the values of the powers of the imaginary number \[i = \sqrt { - 1} \]. To find the values of powers correctly, multiply the previous value by \[i\]. If the power of \[i\] is a multiple of 4 then value of term will be 1.
Formula used:
The values of various powers of imaginary number \[i = \sqrt { - 1} \] are:
\[i = \sqrt { - 1} \]
\[{i^2} = - 1\]
\[{i^3} = - i\]
\[{i^4} = 1\]
Complete step by step solution:
The given expression is \[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2}\].
Let’s simplify the given expression.
\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( {{i^{16}} \times {i^3} + \left( {\dfrac{{{1^{25}}}}{{{i^{24}} \times i}}} \right)} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( {\left( 1 \right) \cdot \left( { - i} \right) + \left( {\dfrac{1}{{\left( 1 \right) \cdot i}}} \right)} \right)^2}\] [Since, \[{i^4} = 1\] and \[{i^3} = - i\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + \dfrac{1}{i}} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + \dfrac{{{i^4}}}{i}} \right)^2}\] [Since, \[{i^4} = 1\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + {i^3}} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i - i} \right)^2}\] [Since, \[{i^3} = - i\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - 2i} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = 4{i^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = 4\left( { - 1} \right)\] [Since, \[{i^2} = - 1\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = - 4\]
Hence the correct option is option B.
Note: Students are often confused with the values of the powers of the imaginary number \[i = \sqrt { - 1} \]. To find the values of powers correctly, multiply the previous value by \[i\]. If the power of \[i\] is a multiple of 4 then value of term will be 1.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

