
Find the value of \[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2}\].
A. 4
B. \[ - 4\]
C. 5
D. \[ - 5\]
Answer
163.2k+ views
Hint In the given question, one expression is given which contains the imaginary number \[i\]. We will rewrite the \[{i^{19}}\] such that \[{i^{16}} \cdot {i^3}\] and plug the value of \[{i^{16}}\] and \[{i^3}\]. In the second term, first we will apply the indices property that is \[{\left( {\dfrac{a}{b}} \right)^m} = \dfrac{{{a^m}}}{{{b^m}}}\]. Then we simplify the denominator only because \[{1^n} = 1\] for any natural number \[n\]. Again rewrite \[{i^{25}}\] as \[{i^{24}} \cdot i\] and put \[{i^{24}} = 1\]. Then rewrite 1 as \[{i^4}\]. Then cancel out the common term and simplify the expression \[{\left( { - i + {i^3}} \right)^2}\]. We know that \[{i^3} = - i\]. So the expression becomes \[{\left( { - 2i} \right)^2}\]. Now we can easily derive the value \[{\left( { - 2i} \right)^2}\].
Formula used:
The values of various powers of imaginary number \[i = \sqrt { - 1} \] are:
\[i = \sqrt { - 1} \]
\[{i^2} = - 1\]
\[{i^3} = - i\]
\[{i^4} = 1\]
Complete step by step solution:
The given expression is \[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2}\].
Let’s simplify the given expression.
\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( {{i^{16}} \times {i^3} + \left( {\dfrac{{{1^{25}}}}{{{i^{24}} \times i}}} \right)} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( {\left( 1 \right) \cdot \left( { - i} \right) + \left( {\dfrac{1}{{\left( 1 \right) \cdot i}}} \right)} \right)^2}\] [Since, \[{i^4} = 1\] and \[{i^3} = - i\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + \dfrac{1}{i}} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + \dfrac{{{i^4}}}{i}} \right)^2}\] [Since, \[{i^4} = 1\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + {i^3}} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i - i} \right)^2}\] [Since, \[{i^3} = - i\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - 2i} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = 4{i^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = 4\left( { - 1} \right)\] [Since, \[{i^2} = - 1\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = - 4\]
Hence the correct option is option B.
Note: Students are often confused with the values of the powers of the imaginary number \[i = \sqrt { - 1} \]. To find the values of powers correctly, multiply the previous value by \[i\]. If the power of \[i\] is a multiple of 4 then value of term will be 1.
Formula used:
The values of various powers of imaginary number \[i = \sqrt { - 1} \] are:
\[i = \sqrt { - 1} \]
\[{i^2} = - 1\]
\[{i^3} = - i\]
\[{i^4} = 1\]
Complete step by step solution:
The given expression is \[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2}\].
Let’s simplify the given expression.
\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( {{i^{16}} \times {i^3} + \left( {\dfrac{{{1^{25}}}}{{{i^{24}} \times i}}} \right)} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( {\left( 1 \right) \cdot \left( { - i} \right) + \left( {\dfrac{1}{{\left( 1 \right) \cdot i}}} \right)} \right)^2}\] [Since, \[{i^4} = 1\] and \[{i^3} = - i\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + \dfrac{1}{i}} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + \dfrac{{{i^4}}}{i}} \right)^2}\] [Since, \[{i^4} = 1\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i + {i^3}} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - i - i} \right)^2}\] [Since, \[{i^3} = - i\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = {\left( { - 2i} \right)^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = 4{i^2}\]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = 4\left( { - 1} \right)\] [Since, \[{i^2} = - 1\]]
\[ \Rightarrow \]\[{\left( {{i^{19}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^2} = - 4\]
Hence the correct option is option B.
Note: Students are often confused with the values of the powers of the imaginary number \[i = \sqrt { - 1} \]. To find the values of powers correctly, multiply the previous value by \[i\]. If the power of \[i\] is a multiple of 4 then value of term will be 1.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
