
Find the value of $\int\limits_0^{10\pi } {\left| {\sin x} \right|} dx$
A. $20$
B. $8$
C. $10$
D. $18$
Answer
163.2k+ views
Hint: Use the property of definite integral and then after dividing the integral into proper limits, solve the integral after putting proper limits.
Formula Used:
Separation formula of integration $\int\limits_a^b {f(x)dx = \int\limits_a^x {f(x)dx + \int\limits_x^b {f(x)dx} } } $
Complete step by step solution:
We have the given integral is:
$I = \int\limits_0^{10\pi } {\left| {\sin x} \right|} dx$
We use the formula $\int\limits_a^b {f(x)dx = \int\limits_a^x {f(x)dx + \int\limits_x^b {f(x)dx} } } $
$ = 5\pi \left[ {\int\limits_0^\pi {\sin xdx - \int\limits_\pi ^{2\pi } {\sin xdx} } } \right]$
$ = 5\left[ {\left( { - \left[ {\cos x} \right]_0^\pi } \right) + \left( {\cos x} \right)_\pi ^{2\pi }} \right]$
Substitute the upper limit and lower limit and we get
$ = 5\left[ { - \left( {\cos \pi - \cos 0} \right) + \left( {\cos 2\pi - \cos \pi } \right)} \right]$
$ = 5\left[ { - \left( { - 1 - 1} \right) + \left( {1 - \left( { - 1} \right)} \right)} \right]$
Simplifying and we get
$ = 5 \times 4$
Multiplying and we get
$ = 20$
Option ‘A’ is correct
Note: If and only if an integral has upper and lower bounds, it is said to be definite. There are numerous definite integral formulas and properties that are often utilized in mathematics. You must determine the difference between the values of the integral at the independent variable's defined upper and lower limits in order to determine the value of a definite integral, which is represented as:
$\int\limits_a^b {f(x)dx} $
Formula Used:
Separation formula of integration $\int\limits_a^b {f(x)dx = \int\limits_a^x {f(x)dx + \int\limits_x^b {f(x)dx} } } $
Complete step by step solution:
We have the given integral is:
$I = \int\limits_0^{10\pi } {\left| {\sin x} \right|} dx$
We use the formula $\int\limits_a^b {f(x)dx = \int\limits_a^x {f(x)dx + \int\limits_x^b {f(x)dx} } } $
$ = 5\pi \left[ {\int\limits_0^\pi {\sin xdx - \int\limits_\pi ^{2\pi } {\sin xdx} } } \right]$
$ = 5\left[ {\left( { - \left[ {\cos x} \right]_0^\pi } \right) + \left( {\cos x} \right)_\pi ^{2\pi }} \right]$
Substitute the upper limit and lower limit and we get
$ = 5\left[ { - \left( {\cos \pi - \cos 0} \right) + \left( {\cos 2\pi - \cos \pi } \right)} \right]$
$ = 5\left[ { - \left( { - 1 - 1} \right) + \left( {1 - \left( { - 1} \right)} \right)} \right]$
Simplifying and we get
$ = 5 \times 4$
Multiplying and we get
$ = 20$
Option ‘A’ is correct
Note: If and only if an integral has upper and lower bounds, it is said to be definite. There are numerous definite integral formulas and properties that are often utilized in mathematics. You must determine the difference between the values of the integral at the independent variable's defined upper and lower limits in order to determine the value of a definite integral, which is represented as:
$\int\limits_a^b {f(x)dx} $
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
