Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the value of \[\dfrac{{dy}}{{dx}}\] ,If \[x = y\sqrt {\left( {1 - {y^2}} \right)} \]
A. \[x\]
B.\[\sqrt {\dfrac{{\left( {1 - {y^2}} \right)}}{{\left( {1 + 2{y^2}} \right)}}} \]
C. \[0\]
D.\[\dfrac{{\sqrt {1 - {y^2}} }}{{1 - 2{y^2}}}\]


Answer
VerifiedVerified
164.1k+ views
Hint:
We will be directly Differentiating the equation given as \[x = y\sqrt {\left( {1 - {y^2}} \right)} \]with respect to \[dx\] .

Formula Used:
We will be using product rule \[\dfrac{d}{{dx}}[f(x) \cdot g(x)] = \dfrac{d}{{dx}}[f(x)] \cdot g(x) + f(x) \cdot \dfrac{d}{{dx}}[g(x)]\] to differentiate the equation .


Complete step-by-step answer:
Integrate the term \[x = y\sqrt {\left( {1 - {y^2}} \right)} \] with respect to \[dx\].
\[x = y\sqrt {\left( {1 - {y^2}} \right)} \]
\[\dfrac{{dx}}{{dx}} = \dfrac{d}{{dx}}\left( {y\sqrt {1 - {y^2}} } \right) \times \dfrac{{dy}}{{dy}}\]
\[1 = \dfrac{d}{{dy}}\left( {y\sqrt {1 - {y^2}} } \right).\dfrac{{dy}}{{dx}}\]
Now by applying Product Rule \[\dfrac{d}{{dx}}[f(x) \cdot g(x)] = \dfrac{d}{{dx}}[f(x)] \cdot g(x) + f(x) \cdot \dfrac{d}{{dx}}[g(x)]\]
\[1 = \dfrac{d}{{dy}}\left( {y\sqrt {1 - {y^2}} } \right).\dfrac{{dy}}{{dx}}\]
\[\left( {\sqrt {1 - {y^2}} + y\dfrac{1}{{2\sqrt {1 - {y^2}} }} \times \left( { - 2y} \right)} \right)\dfrac{{dy}}{{dx}} = 1\]
\[\left( {\sqrt {1 - {y^2}} - \dfrac{{{y^2}}}{{\sqrt {1 - {y^2}} }}} \right)\dfrac{{dy}}{{dx}} = 1\]
\[\left( {\dfrac{{1 - {y^2} - {y^2}}}{{\sqrt {1 - {y^2}} }}} \right)\dfrac{{dy}}{{dx}} = 1\]
\[\left( {\dfrac{{1 - 2{y^2}}}{{\sqrt {1 - {y^2}} }}} \right)\dfrac{{dy}}{{dx}} = 1\]
\[\dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {1 - {y^2}} }}{{1 - 2{y^2}}}\]
Hence the answer is (D) which is\[\dfrac{{dy}}{{dx}} = \dfrac{{\sqrt {1 - {y^2}} }}{{1 - 2{y^2}}}\].



Note:
Students are often confused with chain rule and product rule. The chain rule is applicable when we have to find the derivative of a composite function. The product rule is applicable when two functions multiply with each other. In the given question two functions are multiplied by each other. Thus we apply the product rule.