
Find the value of \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\] .
A.\[\dfrac{1}{4}\]
B.\[\dfrac{1}{{2\sqrt 2 }}\]
C.\[\dfrac{1}{2}\]
D.\[\dfrac{1}{{\sqrt 2 }}\]
Answer
217.8k+ views
Hint: First write the formula of sin3x and cos3x then obtain the value of \[{\cos ^3}x,{\sin ^3}x\] and substitute in the given equation and calculate to obtain the required value.
Formula used:
\[\begin{array}{l}\cos 3x = 4{\cos ^3}x - 3\cos x\\{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\end{array}\]
And
\[\begin{array}{l}\sin 3x = 3\sin x - 4{\sin ^3}x\\{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\end{array}\]
\[\cos 2A = {\cos ^2}A - {\sin ^2}A\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution:
Given trigonometry expression is \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply the formula \[{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\] and \[{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\]
\[ = \dfrac{1}{4}\left( {\cos \dfrac{{3\pi }}{8} + 3\cos \dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{1}{4}\left( {3\sin \dfrac{\pi }{8} - \sin \dfrac{{3\pi }}{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply distributive property:
\[ = \dfrac{1}{4}{\cos ^2}\dfrac{{3\pi }}{8} + \dfrac{3}{4}\cos \dfrac{\pi }{8}\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\sin \dfrac{\pi }{8}\sin \left( {\dfrac{{3\pi }}{8}} \right) - \dfrac{1}{4}{\sin ^2}\left( {\dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\left( {{{\cos }^2}\dfrac{{3\pi }}{8} - {{\sin }^2}\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\left( {\cos \dfrac{\pi }{8}\cos \dfrac{{3\pi }}{8} + \sin \dfrac{\pi }{8}\sin \dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{6\pi }}{8} + \dfrac{3}{4}\cos \left( {\dfrac{{3\pi }}{8} - \dfrac{\pi }{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{3\pi }}{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Rewrite \[\cos \dfrac{{3\pi }}{4}\]:
\[ = \dfrac{1}{4}\cos \left( {\pi - \dfrac{\pi }{4}} \right) + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Apply trigonometry supplementary angles
\[ = - \dfrac{1}{4}\cos \dfrac{\pi }{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Substitute \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]in the above equation:
\[ = - \dfrac{1}{{4\sqrt 2 }} + \dfrac{3}{{4\sqrt 2 }}\]
\[ = \dfrac{2}{{4\sqrt 2 }}\]
\[ = \dfrac{1}{{2\sqrt 2 }}\]
The correct option is B.
Note: Sometime students did not understand how to find the values of \[{\cos ^3}x,{\sin ^3}x\]. So for this use the formula of cos3x and sin3x then from the formula obtain the required value and substitute in the given expression for further calculation.
Formula used:
\[\begin{array}{l}\cos 3x = 4{\cos ^3}x - 3\cos x\\{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\end{array}\]
And
\[\begin{array}{l}\sin 3x = 3\sin x - 4{\sin ^3}x\\{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\end{array}\]
\[\cos 2A = {\cos ^2}A - {\sin ^2}A\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution:
Given trigonometry expression is \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply the formula \[{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\] and \[{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\]
\[ = \dfrac{1}{4}\left( {\cos \dfrac{{3\pi }}{8} + 3\cos \dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{1}{4}\left( {3\sin \dfrac{\pi }{8} - \sin \dfrac{{3\pi }}{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply distributive property:
\[ = \dfrac{1}{4}{\cos ^2}\dfrac{{3\pi }}{8} + \dfrac{3}{4}\cos \dfrac{\pi }{8}\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\sin \dfrac{\pi }{8}\sin \left( {\dfrac{{3\pi }}{8}} \right) - \dfrac{1}{4}{\sin ^2}\left( {\dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\left( {{{\cos }^2}\dfrac{{3\pi }}{8} - {{\sin }^2}\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\left( {\cos \dfrac{\pi }{8}\cos \dfrac{{3\pi }}{8} + \sin \dfrac{\pi }{8}\sin \dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{6\pi }}{8} + \dfrac{3}{4}\cos \left( {\dfrac{{3\pi }}{8} - \dfrac{\pi }{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{3\pi }}{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Rewrite \[\cos \dfrac{{3\pi }}{4}\]:
\[ = \dfrac{1}{4}\cos \left( {\pi - \dfrac{\pi }{4}} \right) + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Apply trigonometry supplementary angles
\[ = - \dfrac{1}{4}\cos \dfrac{\pi }{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Substitute \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]in the above equation:
\[ = - \dfrac{1}{{4\sqrt 2 }} + \dfrac{3}{{4\sqrt 2 }}\]
\[ = \dfrac{2}{{4\sqrt 2 }}\]
\[ = \dfrac{1}{{2\sqrt 2 }}\]
The correct option is B.
Note: Sometime students did not understand how to find the values of \[{\cos ^3}x,{\sin ^3}x\]. So for this use the formula of cos3x and sin3x then from the formula obtain the required value and substitute in the given expression for further calculation.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

