
Find the value of \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\] .
A.\[\dfrac{1}{4}\]
B.\[\dfrac{1}{{2\sqrt 2 }}\]
C.\[\dfrac{1}{2}\]
D.\[\dfrac{1}{{\sqrt 2 }}\]
Answer
164.1k+ views
Hint: First write the formula of sin3x and cos3x then obtain the value of \[{\cos ^3}x,{\sin ^3}x\] and substitute in the given equation and calculate to obtain the required value.
Formula used:
\[\begin{array}{l}\cos 3x = 4{\cos ^3}x - 3\cos x\\{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\end{array}\]
And
\[\begin{array}{l}\sin 3x = 3\sin x - 4{\sin ^3}x\\{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\end{array}\]
\[\cos 2A = {\cos ^2}A - {\sin ^2}A\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution:
Given trigonometry expression is \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply the formula \[{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\] and \[{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\]
\[ = \dfrac{1}{4}\left( {\cos \dfrac{{3\pi }}{8} + 3\cos \dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{1}{4}\left( {3\sin \dfrac{\pi }{8} - \sin \dfrac{{3\pi }}{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply distributive property:
\[ = \dfrac{1}{4}{\cos ^2}\dfrac{{3\pi }}{8} + \dfrac{3}{4}\cos \dfrac{\pi }{8}\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\sin \dfrac{\pi }{8}\sin \left( {\dfrac{{3\pi }}{8}} \right) - \dfrac{1}{4}{\sin ^2}\left( {\dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\left( {{{\cos }^2}\dfrac{{3\pi }}{8} - {{\sin }^2}\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\left( {\cos \dfrac{\pi }{8}\cos \dfrac{{3\pi }}{8} + \sin \dfrac{\pi }{8}\sin \dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{6\pi }}{8} + \dfrac{3}{4}\cos \left( {\dfrac{{3\pi }}{8} - \dfrac{\pi }{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{3\pi }}{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Rewrite \[\cos \dfrac{{3\pi }}{4}\]:
\[ = \dfrac{1}{4}\cos \left( {\pi - \dfrac{\pi }{4}} \right) + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Apply trigonometry supplementary angles
\[ = - \dfrac{1}{4}\cos \dfrac{\pi }{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Substitute \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]in the above equation:
\[ = - \dfrac{1}{{4\sqrt 2 }} + \dfrac{3}{{4\sqrt 2 }}\]
\[ = \dfrac{2}{{4\sqrt 2 }}\]
\[ = \dfrac{1}{{2\sqrt 2 }}\]
The correct option is B.
Note: Sometime students did not understand how to find the values of \[{\cos ^3}x,{\sin ^3}x\]. So for this use the formula of cos3x and sin3x then from the formula obtain the required value and substitute in the given expression for further calculation.
Formula used:
\[\begin{array}{l}\cos 3x = 4{\cos ^3}x - 3\cos x\\{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\end{array}\]
And
\[\begin{array}{l}\sin 3x = 3\sin x - 4{\sin ^3}x\\{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\end{array}\]
\[\cos 2A = {\cos ^2}A - {\sin ^2}A\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
Complete step by step solution:
Given trigonometry expression is \[{\cos ^3}\left( {\dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + {\sin ^3}\left( {\dfrac{\pi }{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply the formula \[{\cos ^3}x = \dfrac{1}{4}\left( {\cos 3x + 3\cos x} \right)\] and \[{\sin ^3}x = \dfrac{1}{4}(3\sin x - \sin 3x)\]
\[ = \dfrac{1}{4}\left( {\cos \dfrac{{3\pi }}{8} + 3\cos \dfrac{\pi }{8}} \right)\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{1}{4}\left( {3\sin \dfrac{\pi }{8} - \sin \dfrac{{3\pi }}{8}} \right)\sin \left( {\dfrac{{3\pi }}{8}} \right)\]
Apply distributive property:
\[ = \dfrac{1}{4}{\cos ^2}\dfrac{{3\pi }}{8} + \dfrac{3}{4}\cos \dfrac{\pi }{8}\cos \left( {\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\sin \dfrac{\pi }{8}\sin \left( {\dfrac{{3\pi }}{8}} \right) - \dfrac{1}{4}{\sin ^2}\left( {\dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\left( {{{\cos }^2}\dfrac{{3\pi }}{8} - {{\sin }^2}\dfrac{{3\pi }}{8}} \right) + \dfrac{3}{4}\left( {\cos \dfrac{\pi }{8}\cos \dfrac{{3\pi }}{8} + \sin \dfrac{\pi }{8}\sin \dfrac{{3\pi }}{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{6\pi }}{8} + \dfrac{3}{4}\cos \left( {\dfrac{{3\pi }}{8} - \dfrac{\pi }{8}} \right)\]
\[ = \dfrac{1}{4}\cos \dfrac{{3\pi }}{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Rewrite \[\cos \dfrac{{3\pi }}{4}\]:
\[ = \dfrac{1}{4}\cos \left( {\pi - \dfrac{\pi }{4}} \right) + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Apply trigonometry supplementary angles
\[ = - \dfrac{1}{4}\cos \dfrac{\pi }{4} + \dfrac{3}{4}\cos \dfrac{\pi }{4}\]
Substitute \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]in the above equation:
\[ = - \dfrac{1}{{4\sqrt 2 }} + \dfrac{3}{{4\sqrt 2 }}\]
\[ = \dfrac{2}{{4\sqrt 2 }}\]
\[ = \dfrac{1}{{2\sqrt 2 }}\]
The correct option is B.
Note: Sometime students did not understand how to find the values of \[{\cos ^3}x,{\sin ^3}x\]. So for this use the formula of cos3x and sin3x then from the formula obtain the required value and substitute in the given expression for further calculation.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
