
Find the value of \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
A. \[{}^{18}{C_3}\]
B. \[{}^{18}{C_4}\]
C. \[{}^{14}{C_7}\]
D. None of these
Answer
162.6k+ views
Hint: First, simplify the summation by substituting the values of \[j\]. Then, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\] and solve the equation. Again, use this property and solve the expression to get the required answer.
Formula Used:\[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\]
Complete step by step solution:The given expression is \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
Simplify the expression by substituting the values of \[j\].
\[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{18 - 1}{C_3} + {}^{18 - 2}{C_3} + {}^{18 - 3}{C_3} + {}^{18 - 4}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{17}{C_3} + {}^{16}{C_3} + {}^{15}{C_3} + {}^{14}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_3} + {}^{14}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
We get,
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{15}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{16}{C_4} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{17}{C_4} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{18}{C_4}\]
Option ‘B’ is correct
Note: The given expression is \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
Simplify the expression by substituting the values of \[j\].
\[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{18 - 1}{C_3} + {}^{18 - 2}{C_3} + {}^{18 - 3}{C_3} + {}^{18 - 4}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{17}{C_3} + {}^{16}{C_3} + {}^{15}{C_3} + {}^{14}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_3} + {}^{14}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
We get,
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{15}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{16}{C_4} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{17}{C_4} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{18}{C_4}\]
Formula Used:\[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\]
Complete step by step solution:The given expression is \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
Simplify the expression by substituting the values of \[j\].
\[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{18 - 1}{C_3} + {}^{18 - 2}{C_3} + {}^{18 - 3}{C_3} + {}^{18 - 4}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{17}{C_3} + {}^{16}{C_3} + {}^{15}{C_3} + {}^{14}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_3} + {}^{14}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
We get,
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{15}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{16}{C_4} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{17}{C_4} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{18}{C_4}\]
Option ‘B’ is correct
Note: The given expression is \[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} \].
Simplify the expression by substituting the values of \[j\].
\[{}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{18 - 1}{C_3} + {}^{18 - 2}{C_3} + {}^{18 - 3}{C_3} + {}^{18 - 4}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_4} + {}^{17}{C_3} + {}^{16}{C_3} + {}^{15}{C_3} + {}^{14}{C_3}\]
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{14}{C_3} + {}^{14}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
We get,
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{15}{C_4} + {}^{15}{C_3} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{16}{C_4} + {}^{16}{C_3} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{17}{C_4} + {}^{17}{C_3}\]
Again, apply the combination property \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\].
\[ \Rightarrow {}^{14}{C_4} + \sum\limits_{j = 1}^4 {{}^{18 - j}{C_3}} = {}^{18}{C_4}\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
