
Find the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
A. \[{\text{2 log 2}}\]
B. \[{\text{2 log 4}}\]
C. \[{\text{2 log 3}}\]
D. None of these
Answer
161.4k+ views
Hint: In this question, we need to find the value of the given expression of \[\log \left( {1 + x} \right)\]\[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]. For this, we have to consider the expansion series of \[\log \left( {1 + x} \right)\]. After that by putting \[x = 1\] and by simplifying it further, we get the final result.
Formula used: We know that the expansion of \[\log \left( {1 + x} \right)\] is \[\log \left( {1 + x} \right) = x{\text{ }} - {\text{ }}{x^2}/2{\text{ }} + {\text{ }}{x^3}/3{\text{ }} - {\text{ }}{x^4}/4{\text{ }} + {\text{ }}......\infty \]
Complete step-by-step answer:
We have to consider \[\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4}.....\]
Now, put \[x = 1\] in the above equation.
Thus, we get
\[\log \left( {1 + 1} \right) = 1 - \dfrac{{{{\left( 1 \right)}^2}}}{2} + \dfrac{{{{\left( 1 \right)}^3}}}{3} - \dfrac{{{{\left( 1 \right)}^4}}}{4} + \dfrac{{{{\left( 1 \right)}^5}}}{5} - \dfrac{{{{\left( 1 \right)}^6}}}{6}.....\]
\[\log \left( 2 \right) = \underbrace {1 - \dfrac{1}{2}}_{consider} + \underbrace {\dfrac{1}{3} - \dfrac{1}{4}}_{consider} + \underbrace {\dfrac{1}{5} - \dfrac{1}{6}}_{consider}.....\]
By simplifying, we get
\[\log \left( 2 \right) = \dfrac{{2 - 1}}{2} + \dfrac{{4 - 3}}{{3 \times 4}} - \dfrac{{6 - 5}}{{5 \times 6}} + .....\]
\[\log \left( 2 \right) = \dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....\] (1)
Now consider \[\log \left( 2 \right) = 1 - \underbrace {\dfrac{1}{2} + \dfrac{1}{3}}_{consider} - \underbrace {\dfrac{1}{4} + \dfrac{1}{5}}_{consider} - \dfrac{1}{6}.....\] again for simplification.
Thus, we get
\[\log \left( 2 \right) = 1 + \dfrac{{ - 3 + 2}}{{1 \times 2 \times 3}} + \dfrac{{ - 5 + 4}}{{1 \times 4 \times 5}} - .....\]
\[\log \left( 2 \right) = 1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....\] (2)
Let us add (1) and (2)
Thus, we get
\[\log \left( 2 \right) + \log \left( 2 \right) = \left[ {\dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....} \right] + \left[ {1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....} \right]\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{1}{{1 \times 2}} - \dfrac{1}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 4 \times 5}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{6 - 2}}{{12}}} \right) + \left( {\dfrac{{20 - 12}}{{240}}} \right) + ....\]
By simplifying further, we get
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{4}{{12}}} \right) + \left( {\dfrac{8}{{240}}} \right) + ....\]
Let us rearrange the terms here.
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{2 \times 2}}{{2 \times 2 \times 3}}} \right) + \left( {\dfrac{{2 \times 2 \times 2}}{{4 \times 60}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{2}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{2}{{1 \times 3 \times 4 \times 5}}} \right) + ....\]
So, we can write it as
\[{\text{2 log 2}} = {\text{1 }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
Hence, we can say that the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]is \[{\text{2 log 2}}\].
Therefore, the correct option is (A).
Additional information: A series expansion is defined as an illustration of a specific function as the sum of powers in one of the variables or as the sum of powers of the other (typically fundamental) function \[f\left( x \right)\]. We know that there are several types of series expansions such as the Taylor series, Fourier series, Laurent series, Dirichlet series, etc.
Note: Here, students generally make mistakes in writing the expansion of \[\log \left( {1 + x} \right)\]. They may forget to take alternate signs. So, ultimately the final result may get wrong. Also, it is necessary to rearrange the terms while simplifying the expansion. Here, the main trick is to get two series by doing simplifications and finally add them to get the desired result.
Formula used: We know that the expansion of \[\log \left( {1 + x} \right)\] is \[\log \left( {1 + x} \right) = x{\text{ }} - {\text{ }}{x^2}/2{\text{ }} + {\text{ }}{x^3}/3{\text{ }} - {\text{ }}{x^4}/4{\text{ }} + {\text{ }}......\infty \]
Complete step-by-step answer:
We have to consider \[\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4}.....\]
Now, put \[x = 1\] in the above equation.
Thus, we get
\[\log \left( {1 + 1} \right) = 1 - \dfrac{{{{\left( 1 \right)}^2}}}{2} + \dfrac{{{{\left( 1 \right)}^3}}}{3} - \dfrac{{{{\left( 1 \right)}^4}}}{4} + \dfrac{{{{\left( 1 \right)}^5}}}{5} - \dfrac{{{{\left( 1 \right)}^6}}}{6}.....\]
\[\log \left( 2 \right) = \underbrace {1 - \dfrac{1}{2}}_{consider} + \underbrace {\dfrac{1}{3} - \dfrac{1}{4}}_{consider} + \underbrace {\dfrac{1}{5} - \dfrac{1}{6}}_{consider}.....\]
By simplifying, we get
\[\log \left( 2 \right) = \dfrac{{2 - 1}}{2} + \dfrac{{4 - 3}}{{3 \times 4}} - \dfrac{{6 - 5}}{{5 \times 6}} + .....\]
\[\log \left( 2 \right) = \dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....\] (1)
Now consider \[\log \left( 2 \right) = 1 - \underbrace {\dfrac{1}{2} + \dfrac{1}{3}}_{consider} - \underbrace {\dfrac{1}{4} + \dfrac{1}{5}}_{consider} - \dfrac{1}{6}.....\] again for simplification.
Thus, we get
\[\log \left( 2 \right) = 1 + \dfrac{{ - 3 + 2}}{{1 \times 2 \times 3}} + \dfrac{{ - 5 + 4}}{{1 \times 4 \times 5}} - .....\]
\[\log \left( 2 \right) = 1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....\] (2)
Let us add (1) and (2)
Thus, we get
\[\log \left( 2 \right) + \log \left( 2 \right) = \left[ {\dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....} \right] + \left[ {1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....} \right]\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{1}{{1 \times 2}} - \dfrac{1}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 4 \times 5}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{6 - 2}}{{12}}} \right) + \left( {\dfrac{{20 - 12}}{{240}}} \right) + ....\]
By simplifying further, we get
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{4}{{12}}} \right) + \left( {\dfrac{8}{{240}}} \right) + ....\]
Let us rearrange the terms here.
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{2 \times 2}}{{2 \times 2 \times 3}}} \right) + \left( {\dfrac{{2 \times 2 \times 2}}{{4 \times 60}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{2}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{2}{{1 \times 3 \times 4 \times 5}}} \right) + ....\]
So, we can write it as
\[{\text{2 log 2}} = {\text{1 }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
Hence, we can say that the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]is \[{\text{2 log 2}}\].
Therefore, the correct option is (A).
Additional information: A series expansion is defined as an illustration of a specific function as the sum of powers in one of the variables or as the sum of powers of the other (typically fundamental) function \[f\left( x \right)\]. We know that there are several types of series expansions such as the Taylor series, Fourier series, Laurent series, Dirichlet series, etc.
Note: Here, students generally make mistakes in writing the expansion of \[\log \left( {1 + x} \right)\]. They may forget to take alternate signs. So, ultimately the final result may get wrong. Also, it is necessary to rearrange the terms while simplifying the expansion. Here, the main trick is to get two series by doing simplifications and finally add them to get the desired result.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
