
Find the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
A. \[{\text{2 log 2}}\]
B. \[{\text{2 log 4}}\]
C. \[{\text{2 log 3}}\]
D. None of these
Answer
233.1k+ views
Hint: In this question, we need to find the value of the given expression of \[\log \left( {1 + x} \right)\]\[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]. For this, we have to consider the expansion series of \[\log \left( {1 + x} \right)\]. After that by putting \[x = 1\] and by simplifying it further, we get the final result.
Formula used: We know that the expansion of \[\log \left( {1 + x} \right)\] is \[\log \left( {1 + x} \right) = x{\text{ }} - {\text{ }}{x^2}/2{\text{ }} + {\text{ }}{x^3}/3{\text{ }} - {\text{ }}{x^4}/4{\text{ }} + {\text{ }}......\infty \]
Complete step-by-step answer:
We have to consider \[\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4}.....\]
Now, put \[x = 1\] in the above equation.
Thus, we get
\[\log \left( {1 + 1} \right) = 1 - \dfrac{{{{\left( 1 \right)}^2}}}{2} + \dfrac{{{{\left( 1 \right)}^3}}}{3} - \dfrac{{{{\left( 1 \right)}^4}}}{4} + \dfrac{{{{\left( 1 \right)}^5}}}{5} - \dfrac{{{{\left( 1 \right)}^6}}}{6}.....\]
\[\log \left( 2 \right) = \underbrace {1 - \dfrac{1}{2}}_{consider} + \underbrace {\dfrac{1}{3} - \dfrac{1}{4}}_{consider} + \underbrace {\dfrac{1}{5} - \dfrac{1}{6}}_{consider}.....\]
By simplifying, we get
\[\log \left( 2 \right) = \dfrac{{2 - 1}}{2} + \dfrac{{4 - 3}}{{3 \times 4}} - \dfrac{{6 - 5}}{{5 \times 6}} + .....\]
\[\log \left( 2 \right) = \dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....\] (1)
Now consider \[\log \left( 2 \right) = 1 - \underbrace {\dfrac{1}{2} + \dfrac{1}{3}}_{consider} - \underbrace {\dfrac{1}{4} + \dfrac{1}{5}}_{consider} - \dfrac{1}{6}.....\] again for simplification.
Thus, we get
\[\log \left( 2 \right) = 1 + \dfrac{{ - 3 + 2}}{{1 \times 2 \times 3}} + \dfrac{{ - 5 + 4}}{{1 \times 4 \times 5}} - .....\]
\[\log \left( 2 \right) = 1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....\] (2)
Let us add (1) and (2)
Thus, we get
\[\log \left( 2 \right) + \log \left( 2 \right) = \left[ {\dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....} \right] + \left[ {1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....} \right]\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{1}{{1 \times 2}} - \dfrac{1}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 4 \times 5}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{6 - 2}}{{12}}} \right) + \left( {\dfrac{{20 - 12}}{{240}}} \right) + ....\]
By simplifying further, we get
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{4}{{12}}} \right) + \left( {\dfrac{8}{{240}}} \right) + ....\]
Let us rearrange the terms here.
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{2 \times 2}}{{2 \times 2 \times 3}}} \right) + \left( {\dfrac{{2 \times 2 \times 2}}{{4 \times 60}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{2}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{2}{{1 \times 3 \times 4 \times 5}}} \right) + ....\]
So, we can write it as
\[{\text{2 log 2}} = {\text{1 }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
Hence, we can say that the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]is \[{\text{2 log 2}}\].
Therefore, the correct option is (A).
Additional information: A series expansion is defined as an illustration of a specific function as the sum of powers in one of the variables or as the sum of powers of the other (typically fundamental) function \[f\left( x \right)\]. We know that there are several types of series expansions such as the Taylor series, Fourier series, Laurent series, Dirichlet series, etc.
Note: Here, students generally make mistakes in writing the expansion of \[\log \left( {1 + x} \right)\]. They may forget to take alternate signs. So, ultimately the final result may get wrong. Also, it is necessary to rearrange the terms while simplifying the expansion. Here, the main trick is to get two series by doing simplifications and finally add them to get the desired result.
Formula used: We know that the expansion of \[\log \left( {1 + x} \right)\] is \[\log \left( {1 + x} \right) = x{\text{ }} - {\text{ }}{x^2}/2{\text{ }} + {\text{ }}{x^3}/3{\text{ }} - {\text{ }}{x^4}/4{\text{ }} + {\text{ }}......\infty \]
Complete step-by-step answer:
We have to consider \[\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4}.....\]
Now, put \[x = 1\] in the above equation.
Thus, we get
\[\log \left( {1 + 1} \right) = 1 - \dfrac{{{{\left( 1 \right)}^2}}}{2} + \dfrac{{{{\left( 1 \right)}^3}}}{3} - \dfrac{{{{\left( 1 \right)}^4}}}{4} + \dfrac{{{{\left( 1 \right)}^5}}}{5} - \dfrac{{{{\left( 1 \right)}^6}}}{6}.....\]
\[\log \left( 2 \right) = \underbrace {1 - \dfrac{1}{2}}_{consider} + \underbrace {\dfrac{1}{3} - \dfrac{1}{4}}_{consider} + \underbrace {\dfrac{1}{5} - \dfrac{1}{6}}_{consider}.....\]
By simplifying, we get
\[\log \left( 2 \right) = \dfrac{{2 - 1}}{2} + \dfrac{{4 - 3}}{{3 \times 4}} - \dfrac{{6 - 5}}{{5 \times 6}} + .....\]
\[\log \left( 2 \right) = \dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....\] (1)
Now consider \[\log \left( 2 \right) = 1 - \underbrace {\dfrac{1}{2} + \dfrac{1}{3}}_{consider} - \underbrace {\dfrac{1}{4} + \dfrac{1}{5}}_{consider} - \dfrac{1}{6}.....\] again for simplification.
Thus, we get
\[\log \left( 2 \right) = 1 + \dfrac{{ - 3 + 2}}{{1 \times 2 \times 3}} + \dfrac{{ - 5 + 4}}{{1 \times 4 \times 5}} - .....\]
\[\log \left( 2 \right) = 1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....\] (2)
Let us add (1) and (2)
Thus, we get
\[\log \left( 2 \right) + \log \left( 2 \right) = \left[ {\dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....} \right] + \left[ {1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....} \right]\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{1}{{1 \times 2}} - \dfrac{1}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 4 \times 5}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{6 - 2}}{{12}}} \right) + \left( {\dfrac{{20 - 12}}{{240}}} \right) + ....\]
By simplifying further, we get
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{4}{{12}}} \right) + \left( {\dfrac{8}{{240}}} \right) + ....\]
Let us rearrange the terms here.
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{2 \times 2}}{{2 \times 2 \times 3}}} \right) + \left( {\dfrac{{2 \times 2 \times 2}}{{4 \times 60}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{2}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{2}{{1 \times 3 \times 4 \times 5}}} \right) + ....\]
So, we can write it as
\[{\text{2 log 2}} = {\text{1 }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
Hence, we can say that the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]is \[{\text{2 log 2}}\].
Therefore, the correct option is (A).
Additional information: A series expansion is defined as an illustration of a specific function as the sum of powers in one of the variables or as the sum of powers of the other (typically fundamental) function \[f\left( x \right)\]. We know that there are several types of series expansions such as the Taylor series, Fourier series, Laurent series, Dirichlet series, etc.
Note: Here, students generally make mistakes in writing the expansion of \[\log \left( {1 + x} \right)\]. They may forget to take alternate signs. So, ultimately the final result may get wrong. Also, it is necessary to rearrange the terms while simplifying the expansion. Here, the main trick is to get two series by doing simplifications and finally add them to get the desired result.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

