
Find the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
A. \[{\text{2 log 2}}\]
B. \[{\text{2 log 4}}\]
C. \[{\text{2 log 3}}\]
D. None of these
Answer
218.4k+ views
Hint: In this question, we need to find the value of the given expression of \[\log \left( {1 + x} \right)\]\[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]. For this, we have to consider the expansion series of \[\log \left( {1 + x} \right)\]. After that by putting \[x = 1\] and by simplifying it further, we get the final result.
Formula used: We know that the expansion of \[\log \left( {1 + x} \right)\] is \[\log \left( {1 + x} \right) = x{\text{ }} - {\text{ }}{x^2}/2{\text{ }} + {\text{ }}{x^3}/3{\text{ }} - {\text{ }}{x^4}/4{\text{ }} + {\text{ }}......\infty \]
Complete step-by-step answer:
We have to consider \[\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4}.....\]
Now, put \[x = 1\] in the above equation.
Thus, we get
\[\log \left( {1 + 1} \right) = 1 - \dfrac{{{{\left( 1 \right)}^2}}}{2} + \dfrac{{{{\left( 1 \right)}^3}}}{3} - \dfrac{{{{\left( 1 \right)}^4}}}{4} + \dfrac{{{{\left( 1 \right)}^5}}}{5} - \dfrac{{{{\left( 1 \right)}^6}}}{6}.....\]
\[\log \left( 2 \right) = \underbrace {1 - \dfrac{1}{2}}_{consider} + \underbrace {\dfrac{1}{3} - \dfrac{1}{4}}_{consider} + \underbrace {\dfrac{1}{5} - \dfrac{1}{6}}_{consider}.....\]
By simplifying, we get
\[\log \left( 2 \right) = \dfrac{{2 - 1}}{2} + \dfrac{{4 - 3}}{{3 \times 4}} - \dfrac{{6 - 5}}{{5 \times 6}} + .....\]
\[\log \left( 2 \right) = \dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....\] (1)
Now consider \[\log \left( 2 \right) = 1 - \underbrace {\dfrac{1}{2} + \dfrac{1}{3}}_{consider} - \underbrace {\dfrac{1}{4} + \dfrac{1}{5}}_{consider} - \dfrac{1}{6}.....\] again for simplification.
Thus, we get
\[\log \left( 2 \right) = 1 + \dfrac{{ - 3 + 2}}{{1 \times 2 \times 3}} + \dfrac{{ - 5 + 4}}{{1 \times 4 \times 5}} - .....\]
\[\log \left( 2 \right) = 1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....\] (2)
Let us add (1) and (2)
Thus, we get
\[\log \left( 2 \right) + \log \left( 2 \right) = \left[ {\dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....} \right] + \left[ {1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....} \right]\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{1}{{1 \times 2}} - \dfrac{1}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 4 \times 5}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{6 - 2}}{{12}}} \right) + \left( {\dfrac{{20 - 12}}{{240}}} \right) + ....\]
By simplifying further, we get
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{4}{{12}}} \right) + \left( {\dfrac{8}{{240}}} \right) + ....\]
Let us rearrange the terms here.
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{2 \times 2}}{{2 \times 2 \times 3}}} \right) + \left( {\dfrac{{2 \times 2 \times 2}}{{4 \times 60}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{2}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{2}{{1 \times 3 \times 4 \times 5}}} \right) + ....\]
So, we can write it as
\[{\text{2 log 2}} = {\text{1 }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
Hence, we can say that the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]is \[{\text{2 log 2}}\].
Therefore, the correct option is (A).
Additional information: A series expansion is defined as an illustration of a specific function as the sum of powers in one of the variables or as the sum of powers of the other (typically fundamental) function \[f\left( x \right)\]. We know that there are several types of series expansions such as the Taylor series, Fourier series, Laurent series, Dirichlet series, etc.
Note: Here, students generally make mistakes in writing the expansion of \[\log \left( {1 + x} \right)\]. They may forget to take alternate signs. So, ultimately the final result may get wrong. Also, it is necessary to rearrange the terms while simplifying the expansion. Here, the main trick is to get two series by doing simplifications and finally add them to get the desired result.
Formula used: We know that the expansion of \[\log \left( {1 + x} \right)\] is \[\log \left( {1 + x} \right) = x{\text{ }} - {\text{ }}{x^2}/2{\text{ }} + {\text{ }}{x^3}/3{\text{ }} - {\text{ }}{x^4}/4{\text{ }} + {\text{ }}......\infty \]
Complete step-by-step answer:
We have to consider \[\log \left( {1 + x} \right) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4}.....\]
Now, put \[x = 1\] in the above equation.
Thus, we get
\[\log \left( {1 + 1} \right) = 1 - \dfrac{{{{\left( 1 \right)}^2}}}{2} + \dfrac{{{{\left( 1 \right)}^3}}}{3} - \dfrac{{{{\left( 1 \right)}^4}}}{4} + \dfrac{{{{\left( 1 \right)}^5}}}{5} - \dfrac{{{{\left( 1 \right)}^6}}}{6}.....\]
\[\log \left( 2 \right) = \underbrace {1 - \dfrac{1}{2}}_{consider} + \underbrace {\dfrac{1}{3} - \dfrac{1}{4}}_{consider} + \underbrace {\dfrac{1}{5} - \dfrac{1}{6}}_{consider}.....\]
By simplifying, we get
\[\log \left( 2 \right) = \dfrac{{2 - 1}}{2} + \dfrac{{4 - 3}}{{3 \times 4}} - \dfrac{{6 - 5}}{{5 \times 6}} + .....\]
\[\log \left( 2 \right) = \dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....\] (1)
Now consider \[\log \left( 2 \right) = 1 - \underbrace {\dfrac{1}{2} + \dfrac{1}{3}}_{consider} - \underbrace {\dfrac{1}{4} + \dfrac{1}{5}}_{consider} - \dfrac{1}{6}.....\] again for simplification.
Thus, we get
\[\log \left( 2 \right) = 1 + \dfrac{{ - 3 + 2}}{{1 \times 2 \times 3}} + \dfrac{{ - 5 + 4}}{{1 \times 4 \times 5}} - .....\]
\[\log \left( 2 \right) = 1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....\] (2)
Let us add (1) and (2)
Thus, we get
\[\log \left( 2 \right) + \log \left( 2 \right) = \left[ {\dfrac{1}{{1 \times 2}} + \dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 5 \times 6}} + .....} \right] + \left[ {1 - \dfrac{1}{{1 \times 2 \times 3}} - \dfrac{1}{{1 \times 4 \times 5}} - .....} \right]\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{1}{{1 \times 2}} - \dfrac{1}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{1}{{1 \times 3 \times 4}} - \dfrac{1}{{1 \times 4 \times 5}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{6 - 2}}{{12}}} \right) + \left( {\dfrac{{20 - 12}}{{240}}} \right) + ....\]
By simplifying further, we get
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{4}{{12}}} \right) + \left( {\dfrac{8}{{240}}} \right) + ....\]
Let us rearrange the terms here.
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{{2 \times 2}}{{2 \times 2 \times 3}}} \right) + \left( {\dfrac{{2 \times 2 \times 2}}{{4 \times 60}}} \right) + ....\]
\[2\log \left( 2 \right) = 1 + \left( {\dfrac{2}{{1 \times 2 \times 3}}} \right) + \left( {\dfrac{2}{{1 \times 3 \times 4 \times 5}}} \right) + ....\]
So, we can write it as
\[{\text{2 log 2}} = {\text{1 }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]
Hence, we can say that the value of \[1{\text{ }} + {\text{ }}2/1.2.3{\text{ }} + {\text{ }}2/3.4.5{\text{ }} + {\text{ }}2/5.6.7{\text{ }} + ....\infty {\text{ }}\]is \[{\text{2 log 2}}\].
Therefore, the correct option is (A).
Additional information: A series expansion is defined as an illustration of a specific function as the sum of powers in one of the variables or as the sum of powers of the other (typically fundamental) function \[f\left( x \right)\]. We know that there are several types of series expansions such as the Taylor series, Fourier series, Laurent series, Dirichlet series, etc.
Note: Here, students generally make mistakes in writing the expansion of \[\log \left( {1 + x} \right)\]. They may forget to take alternate signs. So, ultimately the final result may get wrong. Also, it is necessary to rearrange the terms while simplifying the expansion. Here, the main trick is to get two series by doing simplifications and finally add them to get the desired result.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

