
Find the term independent of $x$in the expansion of
${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$
Answer
232.8k+ views
Hint: Use binomial expansion and equate the power of x to zero.
As we know according to Binomial expansion, the expansion of
${\left( {b - a} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}{b^{n - r}}{{\left( { - a} \right)}^r}} $
So, on comparing $b = {x^3},{\text{ }}a = \dfrac{3}{{{x^2}}},{\text{ }}n = 15$
$
\Rightarrow {\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( {{x^3}} \right)}^{15 - r}}{{\left( { - \dfrac{3}{{{x^2}}}} \right)}^r}} \\
= \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 3r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}{{\left( x \right)}^{ - 2r}}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} \\
$
Now, we want the term independent of $x$
So, put the power of $x$in the expansion of ${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$ equal to zero.
$
\Rightarrow 45 - 5r = 0 \\
\Rightarrow 5r = 45 \\
\Rightarrow r = 9 \\
$
So, put $r = 9,$in $\sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} $ we have
$
\Rightarrow \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} = {}^{15}{C_9}{\left( x \right)^0}{\left( { - 1} \right)^9}{\left( 3 \right)^9} \\
\Rightarrow - {}^{15}{C_9}{\left( 3 \right)^9} \\
$
So, this is the required term independent of $x$ in the expansion of ${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the general expansion of ${\left( {b - a} \right)^n}$, then in the expansion put the power of $x$ equal to zero, and calculate the value of $r$, then put this value of $r$ in the expansion we will get the required term which is independent of $x$.
As we know according to Binomial expansion, the expansion of
${\left( {b - a} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}{b^{n - r}}{{\left( { - a} \right)}^r}} $
So, on comparing $b = {x^3},{\text{ }}a = \dfrac{3}{{{x^2}}},{\text{ }}n = 15$
$
\Rightarrow {\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( {{x^3}} \right)}^{15 - r}}{{\left( { - \dfrac{3}{{{x^2}}}} \right)}^r}} \\
= \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 3r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}{{\left( x \right)}^{ - 2r}}} = \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} \\
$
Now, we want the term independent of $x$
So, put the power of $x$in the expansion of ${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$ equal to zero.
$
\Rightarrow 45 - 5r = 0 \\
\Rightarrow 5r = 45 \\
\Rightarrow r = 9 \\
$
So, put $r = 9,$in $\sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} $ we have
$
\Rightarrow \sum\limits_{r = 0}^{15} {{}^{15}{C_r}{{\left( x \right)}^{45 - 5r}}{{\left( { - 1} \right)}^r}{{\left( 3 \right)}^r}} = {}^{15}{C_9}{\left( x \right)^0}{\left( { - 1} \right)^9}{\left( 3 \right)^9} \\
\Rightarrow - {}^{15}{C_9}{\left( 3 \right)^9} \\
$
So, this is the required term independent of $x$ in the expansion of ${\left( {{x^3} - \dfrac{3}{{{x^2}}}} \right)^{15}}$.
Note: - Whenever we face such type of problem the key concept we have to remember is that always remember the general expansion of ${\left( {b - a} \right)^n}$, then in the expansion put the power of $x$ equal to zero, and calculate the value of $r$, then put this value of $r$ in the expansion we will get the required term which is independent of $x$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

