
Find the sum of the series \[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \].
A) \[4e - 1\]
B) \[4e - 3\]
C) \[3e + 2\]
D) \[3e + 4\]
Answer
163.5k+ views
Hint:
In order to solve the question, first check whether the numerators form an arithmetic progression. Next, assume the \[{n}^{th}\] term of the AP. Now, consider the first three terms and find the value of the \[{t_n}\]. Finally, find the required sum of the series.
Formula Used:
\[e{\rm{ }} = {\rm{ }}1 + \dfrac{1}{{1!}}{\rm{ }} + \dfrac{1}{{2!}}{\rm{ }} + \dfrac{1}{{3!}}{\rm{ }} + \dfrac{1}{{4!}}{\rm{ }} + \ldots \]
\[e-1 = \dfrac{1}{{n!}}{\rm{ }} \]
\[2e = \dfrac{n^2}{{n!}}{\rm{ }} \]
Complete step-by-step answer:
Given that
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
Here the numerators are in AP since they have a successive difference.
Suppose that the \[{n}^{th}\] term is
\[{t_n} = a{n}^2 + bn + c\]
Let, \[n = 1,2,3\]
That is
\[{t_1} = a + b + c\]
\[ \Rightarrow a + b + c = 3\]. . . . . . (1)
\[{t_2} = 4a + 2b + c\]
\[ \Rightarrow 4a + 2b + c = 5\]. . . . . . (2)
\[{t_3} = 9a + 3b + c\]
\[ \Rightarrow 9a + 3b + c = 9\]. . . . . . (3)
Solving the equations (1), (2) and (3) we get
\[a = 1, b = - 1, c = 3\]
That is
\[{t_n} = {n^2} - n + 3\]
So we can write it as,
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
\[ = \dfrac{{{t_n}}}{{n!}}\]
\[ = \dfrac{{{n^2} - n + 3}}{{n!}}\]
\[ = \sum\limits_{n = 1}^\infty {\dfrac{{{n^2}}}{{n!}}} - \sum\limits_{n = 1}^\infty {\dfrac{n}{{n!}}} + 3\sum\limits_{n = 1}^\infty {\dfrac{1}{{n!}}} \]
\[ = \left( {\dfrac{1}{{1!}} + \dfrac{{{2^2}}}{{2!}} + \dfrac{{{3^2}}}{{3!}} + ... + \infty } \right) - \left( {\dfrac{1}{{1!}} + \dfrac{2}{{2!}} + \dfrac{3}{{3!}} + ... + \infty } \right) + 3\left( {\dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}} + ... + \infty } \right)\]
\[ = 2e{\rm{ }}-{\rm{ }}e{\rm{ }} + {\rm{ }}3\left( {e - 1} \right)\]
\[ = 4e - 3\]
Hence option B is the correct answer.
Note:
Students can make mistakes while finding the value of the \[{n}^{th}\] term. Proper care should be given while solving the equations.
In order to solve the question, first check whether the numerators form an arithmetic progression. Next, assume the \[{n}^{th}\] term of the AP. Now, consider the first three terms and find the value of the \[{t_n}\]. Finally, find the required sum of the series.
Formula Used:
\[e{\rm{ }} = {\rm{ }}1 + \dfrac{1}{{1!}}{\rm{ }} + \dfrac{1}{{2!}}{\rm{ }} + \dfrac{1}{{3!}}{\rm{ }} + \dfrac{1}{{4!}}{\rm{ }} + \ldots \]
\[e-1 = \dfrac{1}{{n!}}{\rm{ }} \]
\[2e = \dfrac{n^2}{{n!}}{\rm{ }} \]
Complete step-by-step answer:
Given that
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
Here the numerators are in AP since they have a successive difference.
Suppose that the \[{n}^{th}\] term is
\[{t_n} = a{n}^2 + bn + c\]
Let, \[n = 1,2,3\]
That is
\[{t_1} = a + b + c\]
\[ \Rightarrow a + b + c = 3\]. . . . . . (1)
\[{t_2} = 4a + 2b + c\]
\[ \Rightarrow 4a + 2b + c = 5\]. . . . . . (2)
\[{t_3} = 9a + 3b + c\]
\[ \Rightarrow 9a + 3b + c = 9\]. . . . . . (3)
Solving the equations (1), (2) and (3) we get
\[a = 1, b = - 1, c = 3\]
That is
\[{t_n} = {n^2} - n + 3\]
So we can write it as,
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
\[ = \dfrac{{{t_n}}}{{n!}}\]
\[ = \dfrac{{{n^2} - n + 3}}{{n!}}\]
\[ = \sum\limits_{n = 1}^\infty {\dfrac{{{n^2}}}{{n!}}} - \sum\limits_{n = 1}^\infty {\dfrac{n}{{n!}}} + 3\sum\limits_{n = 1}^\infty {\dfrac{1}{{n!}}} \]
\[ = \left( {\dfrac{1}{{1!}} + \dfrac{{{2^2}}}{{2!}} + \dfrac{{{3^2}}}{{3!}} + ... + \infty } \right) - \left( {\dfrac{1}{{1!}} + \dfrac{2}{{2!}} + \dfrac{3}{{3!}} + ... + \infty } \right) + 3\left( {\dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}} + ... + \infty } \right)\]
\[ = 2e{\rm{ }}-{\rm{ }}e{\rm{ }} + {\rm{ }}3\left( {e - 1} \right)\]
\[ = 4e - 3\]
Hence option B is the correct answer.
Note:
Students can make mistakes while finding the value of the \[{n}^{th}\] term. Proper care should be given while solving the equations.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
