
Find the sum of the series \[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \].
A) \[4e - 1\]
B) \[4e - 3\]
C) \[3e + 2\]
D) \[3e + 4\]
Answer
162.9k+ views
Hint:
In order to solve the question, first check whether the numerators form an arithmetic progression. Next, assume the \[{n}^{th}\] term of the AP. Now, consider the first three terms and find the value of the \[{t_n}\]. Finally, find the required sum of the series.
Formula Used:
\[e{\rm{ }} = {\rm{ }}1 + \dfrac{1}{{1!}}{\rm{ }} + \dfrac{1}{{2!}}{\rm{ }} + \dfrac{1}{{3!}}{\rm{ }} + \dfrac{1}{{4!}}{\rm{ }} + \ldots \]
\[e-1 = \dfrac{1}{{n!}}{\rm{ }} \]
\[2e = \dfrac{n^2}{{n!}}{\rm{ }} \]
Complete step-by-step answer:
Given that
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
Here the numerators are in AP since they have a successive difference.
Suppose that the \[{n}^{th}\] term is
\[{t_n} = a{n}^2 + bn + c\]
Let, \[n = 1,2,3\]
That is
\[{t_1} = a + b + c\]
\[ \Rightarrow a + b + c = 3\]. . . . . . (1)
\[{t_2} = 4a + 2b + c\]
\[ \Rightarrow 4a + 2b + c = 5\]. . . . . . (2)
\[{t_3} = 9a + 3b + c\]
\[ \Rightarrow 9a + 3b + c = 9\]. . . . . . (3)
Solving the equations (1), (2) and (3) we get
\[a = 1, b = - 1, c = 3\]
That is
\[{t_n} = {n^2} - n + 3\]
So we can write it as,
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
\[ = \dfrac{{{t_n}}}{{n!}}\]
\[ = \dfrac{{{n^2} - n + 3}}{{n!}}\]
\[ = \sum\limits_{n = 1}^\infty {\dfrac{{{n^2}}}{{n!}}} - \sum\limits_{n = 1}^\infty {\dfrac{n}{{n!}}} + 3\sum\limits_{n = 1}^\infty {\dfrac{1}{{n!}}} \]
\[ = \left( {\dfrac{1}{{1!}} + \dfrac{{{2^2}}}{{2!}} + \dfrac{{{3^2}}}{{3!}} + ... + \infty } \right) - \left( {\dfrac{1}{{1!}} + \dfrac{2}{{2!}} + \dfrac{3}{{3!}} + ... + \infty } \right) + 3\left( {\dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}} + ... + \infty } \right)\]
\[ = 2e{\rm{ }}-{\rm{ }}e{\rm{ }} + {\rm{ }}3\left( {e - 1} \right)\]
\[ = 4e - 3\]
Hence option B is the correct answer.
Note:
Students can make mistakes while finding the value of the \[{n}^{th}\] term. Proper care should be given while solving the equations.
In order to solve the question, first check whether the numerators form an arithmetic progression. Next, assume the \[{n}^{th}\] term of the AP. Now, consider the first three terms and find the value of the \[{t_n}\]. Finally, find the required sum of the series.
Formula Used:
\[e{\rm{ }} = {\rm{ }}1 + \dfrac{1}{{1!}}{\rm{ }} + \dfrac{1}{{2!}}{\rm{ }} + \dfrac{1}{{3!}}{\rm{ }} + \dfrac{1}{{4!}}{\rm{ }} + \ldots \]
\[e-1 = \dfrac{1}{{n!}}{\rm{ }} \]
\[2e = \dfrac{n^2}{{n!}}{\rm{ }} \]
Complete step-by-step answer:
Given that
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
Here the numerators are in AP since they have a successive difference.
Suppose that the \[{n}^{th}\] term is
\[{t_n} = a{n}^2 + bn + c\]
Let, \[n = 1,2,3\]
That is
\[{t_1} = a + b + c\]
\[ \Rightarrow a + b + c = 3\]. . . . . . (1)
\[{t_2} = 4a + 2b + c\]
\[ \Rightarrow 4a + 2b + c = 5\]. . . . . . (2)
\[{t_3} = 9a + 3b + c\]
\[ \Rightarrow 9a + 3b + c = 9\]. . . . . . (3)
Solving the equations (1), (2) and (3) we get
\[a = 1, b = - 1, c = 3\]
That is
\[{t_n} = {n^2} - n + 3\]
So we can write it as,
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
\[ = \dfrac{{{t_n}}}{{n!}}\]
\[ = \dfrac{{{n^2} - n + 3}}{{n!}}\]
\[ = \sum\limits_{n = 1}^\infty {\dfrac{{{n^2}}}{{n!}}} - \sum\limits_{n = 1}^\infty {\dfrac{n}{{n!}}} + 3\sum\limits_{n = 1}^\infty {\dfrac{1}{{n!}}} \]
\[ = \left( {\dfrac{1}{{1!}} + \dfrac{{{2^2}}}{{2!}} + \dfrac{{{3^2}}}{{3!}} + ... + \infty } \right) - \left( {\dfrac{1}{{1!}} + \dfrac{2}{{2!}} + \dfrac{3}{{3!}} + ... + \infty } \right) + 3\left( {\dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}} + ... + \infty } \right)\]
\[ = 2e{\rm{ }}-{\rm{ }}e{\rm{ }} + {\rm{ }}3\left( {e - 1} \right)\]
\[ = 4e - 3\]
Hence option B is the correct answer.
Note:
Students can make mistakes while finding the value of the \[{n}^{th}\] term. Proper care should be given while solving the equations.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
