
Find the sum of the series \[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \].
A) \[4e - 1\]
B) \[4e - 3\]
C) \[3e + 2\]
D) \[3e + 4\]
Answer
216.3k+ views
Hint:
In order to solve the question, first check whether the numerators form an arithmetic progression. Next, assume the \[{n}^{th}\] term of the AP. Now, consider the first three terms and find the value of the \[{t_n}\]. Finally, find the required sum of the series.
Formula Used:
\[e{\rm{ }} = {\rm{ }}1 + \dfrac{1}{{1!}}{\rm{ }} + \dfrac{1}{{2!}}{\rm{ }} + \dfrac{1}{{3!}}{\rm{ }} + \dfrac{1}{{4!}}{\rm{ }} + \ldots \]
\[e-1 = \dfrac{1}{{n!}}{\rm{ }} \]
\[2e = \dfrac{n^2}{{n!}}{\rm{ }} \]
Complete step-by-step answer:
Given that
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
Here the numerators are in AP since they have a successive difference.
Suppose that the \[{n}^{th}\] term is
\[{t_n} = a{n}^2 + bn + c\]
Let, \[n = 1,2,3\]
That is
\[{t_1} = a + b + c\]
\[ \Rightarrow a + b + c = 3\]. . . . . . (1)
\[{t_2} = 4a + 2b + c\]
\[ \Rightarrow 4a + 2b + c = 5\]. . . . . . (2)
\[{t_3} = 9a + 3b + c\]
\[ \Rightarrow 9a + 3b + c = 9\]. . . . . . (3)
Solving the equations (1), (2) and (3) we get
\[a = 1, b = - 1, c = 3\]
That is
\[{t_n} = {n^2} - n + 3\]
So we can write it as,
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
\[ = \dfrac{{{t_n}}}{{n!}}\]
\[ = \dfrac{{{n^2} - n + 3}}{{n!}}\]
\[ = \sum\limits_{n = 1}^\infty {\dfrac{{{n^2}}}{{n!}}} - \sum\limits_{n = 1}^\infty {\dfrac{n}{{n!}}} + 3\sum\limits_{n = 1}^\infty {\dfrac{1}{{n!}}} \]
\[ = \left( {\dfrac{1}{{1!}} + \dfrac{{{2^2}}}{{2!}} + \dfrac{{{3^2}}}{{3!}} + ... + \infty } \right) - \left( {\dfrac{1}{{1!}} + \dfrac{2}{{2!}} + \dfrac{3}{{3!}} + ... + \infty } \right) + 3\left( {\dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}} + ... + \infty } \right)\]
\[ = 2e{\rm{ }}-{\rm{ }}e{\rm{ }} + {\rm{ }}3\left( {e - 1} \right)\]
\[ = 4e - 3\]
Hence option B is the correct answer.
Note:
Students can make mistakes while finding the value of the \[{n}^{th}\] term. Proper care should be given while solving the equations.
In order to solve the question, first check whether the numerators form an arithmetic progression. Next, assume the \[{n}^{th}\] term of the AP. Now, consider the first three terms and find the value of the \[{t_n}\]. Finally, find the required sum of the series.
Formula Used:
\[e{\rm{ }} = {\rm{ }}1 + \dfrac{1}{{1!}}{\rm{ }} + \dfrac{1}{{2!}}{\rm{ }} + \dfrac{1}{{3!}}{\rm{ }} + \dfrac{1}{{4!}}{\rm{ }} + \ldots \]
\[e-1 = \dfrac{1}{{n!}}{\rm{ }} \]
\[2e = \dfrac{n^2}{{n!}}{\rm{ }} \]
Complete step-by-step answer:
Given that
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
Here the numerators are in AP since they have a successive difference.
Suppose that the \[{n}^{th}\] term is
\[{t_n} = a{n}^2 + bn + c\]
Let, \[n = 1,2,3\]
That is
\[{t_1} = a + b + c\]
\[ \Rightarrow a + b + c = 3\]. . . . . . (1)
\[{t_2} = 4a + 2b + c\]
\[ \Rightarrow 4a + 2b + c = 5\]. . . . . . (2)
\[{t_3} = 9a + 3b + c\]
\[ \Rightarrow 9a + 3b + c = 9\]. . . . . . (3)
Solving the equations (1), (2) and (3) we get
\[a = 1, b = - 1, c = 3\]
That is
\[{t_n} = {n^2} - n + 3\]
So we can write it as,
\[\dfrac{3}{{1!}} + \dfrac{5}{{2!}} + \dfrac{9}{{3!}} + \dfrac{{15}}{{4!}} + \dfrac{{23}}{{5!}} + ... + \infty \]
\[ = \dfrac{{{t_n}}}{{n!}}\]
\[ = \dfrac{{{n^2} - n + 3}}{{n!}}\]
\[ = \sum\limits_{n = 1}^\infty {\dfrac{{{n^2}}}{{n!}}} - \sum\limits_{n = 1}^\infty {\dfrac{n}{{n!}}} + 3\sum\limits_{n = 1}^\infty {\dfrac{1}{{n!}}} \]
\[ = \left( {\dfrac{1}{{1!}} + \dfrac{{{2^2}}}{{2!}} + \dfrac{{{3^2}}}{{3!}} + ... + \infty } \right) - \left( {\dfrac{1}{{1!}} + \dfrac{2}{{2!}} + \dfrac{3}{{3!}} + ... + \infty } \right) + 3\left( {\dfrac{1}{{1!}} + \dfrac{1}{{2!}} + \dfrac{1}{{3!}} + ... + \infty } \right)\]
\[ = 2e{\rm{ }}-{\rm{ }}e{\rm{ }} + {\rm{ }}3\left( {e - 1} \right)\]
\[ = 4e - 3\]
Hence option B is the correct answer.
Note:
Students can make mistakes while finding the value of the \[{n}^{th}\] term. Proper care should be given while solving the equations.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

