
Find the sum of the first 15 terms of an AP whose fifth and ninth terms are 26 and 42 respectively.
Answer
216k+ views
Hint: Consider any AP whose first term is a and the common difference is d. Use the formula that the \[{{n}^{th}}\] term of AP can be written as \[{{a}_{n}}=a+\left( n-1 \right)d\] and the sum of n terms of an AP is \[{{S}_{n}}=\dfrac{n}{2}[2a+\left( n-1 \right)d]\]. Write equations based on the data given in the question and solve them to find the sum of first 15 terms of AP.
Complete step-by-step answer:
We have to find the sum of the first 15 terms of an AP whose fifth term is 26 and ninth term is 42.
We will assume that the first term of an AP is given by a and the common difference is given by d. We will now write any general term of an AP.
So, we can write the\[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\].
Substituting \[n=5\] in the above equation, we have \[{{a}_{5}}=a+\left( 5-1 \right)d=26\].
Simplifying the above equation, we have \[a+4d=26.....\left( 1 \right)\].
Substituting \[n=9\] in the above formula, we have \[{{a}_{9}}=a+\left( 9-1 \right)d=42\].
Simplifying the above equation, we have \[a+8d=42.....\left( 2 \right)\].
We will now solve equation (1) and (2). Subtracting equation (1) from equation (2), we have \[a+8d-\left( a+4d \right)=42-26\].
Thus, we have \[4d=16\].
\[\Rightarrow d=4\]
So, the value of common difference d is \[d=4\].
Substituting the value \[d=4\] in equation (1), we have \[a+4\left( 4 \right)=26\].
Thus, we have \[a=26-16=10\].
Thus, the first term of AP is \[a=10\].
We will now evaluate the sum of the first 15 terms of AP.
We know that the sum of first n terms of AP is given by \[{{S}_{n}}=\dfrac{n}{2}[2a+\left( n-1 \right)d]\].
Substituting \[n=15,a=10,d=4\] in the above equation, we have \[{{S}_{15}}=\dfrac{15}{2}[2\left( 10 \right)+\left( 15-1 \right)4]\].
Simplifying the above expression, we have \[{{S}_{15}}=570\].
Hence, the sum of the first 15 terms of an AP whose fifth and ninth terms are 26 and 42 respectively is given by 570.
Note: Arithmetic Progression is a sequence of numbers such that the difference between any two consecutive terms is a constant. To find the sum of the first 15 terms, we can find all the 15 terms and then add them to get their sum. However, it will be very time consuming. So, it’s better to use the formula of finding sum of n terms to AP.
Complete step-by-step answer:
We have to find the sum of the first 15 terms of an AP whose fifth term is 26 and ninth term is 42.
We will assume that the first term of an AP is given by a and the common difference is given by d. We will now write any general term of an AP.
So, we can write the\[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\].
Substituting \[n=5\] in the above equation, we have \[{{a}_{5}}=a+\left( 5-1 \right)d=26\].
Simplifying the above equation, we have \[a+4d=26.....\left( 1 \right)\].
Substituting \[n=9\] in the above formula, we have \[{{a}_{9}}=a+\left( 9-1 \right)d=42\].
Simplifying the above equation, we have \[a+8d=42.....\left( 2 \right)\].
We will now solve equation (1) and (2). Subtracting equation (1) from equation (2), we have \[a+8d-\left( a+4d \right)=42-26\].
Thus, we have \[4d=16\].
\[\Rightarrow d=4\]
So, the value of common difference d is \[d=4\].
Substituting the value \[d=4\] in equation (1), we have \[a+4\left( 4 \right)=26\].
Thus, we have \[a=26-16=10\].
Thus, the first term of AP is \[a=10\].
We will now evaluate the sum of the first 15 terms of AP.
We know that the sum of first n terms of AP is given by \[{{S}_{n}}=\dfrac{n}{2}[2a+\left( n-1 \right)d]\].
Substituting \[n=15,a=10,d=4\] in the above equation, we have \[{{S}_{15}}=\dfrac{15}{2}[2\left( 10 \right)+\left( 15-1 \right)4]\].
Simplifying the above expression, we have \[{{S}_{15}}=570\].
Hence, the sum of the first 15 terms of an AP whose fifth and ninth terms are 26 and 42 respectively is given by 570.
Note: Arithmetic Progression is a sequence of numbers such that the difference between any two consecutive terms is a constant. To find the sum of the first 15 terms, we can find all the 15 terms and then add them to get their sum. However, it will be very time consuming. So, it’s better to use the formula of finding sum of n terms to AP.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

