
Find the sum of the first 15 terms of an AP whose fifth and ninth terms are 26 and 42 respectively.
Answer
145.5k+ views
Hint: Consider any AP whose first term is a and the common difference is d. Use the formula that the \[{{n}^{th}}\] term of AP can be written as \[{{a}_{n}}=a+\left( n-1 \right)d\] and the sum of n terms of an AP is \[{{S}_{n}}=\dfrac{n}{2}[2a+\left( n-1 \right)d]\]. Write equations based on the data given in the question and solve them to find the sum of first 15 terms of AP.
Complete step-by-step answer:
We have to find the sum of the first 15 terms of an AP whose fifth term is 26 and ninth term is 42.
We will assume that the first term of an AP is given by a and the common difference is given by d. We will now write any general term of an AP.
So, we can write the\[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\].
Substituting \[n=5\] in the above equation, we have \[{{a}_{5}}=a+\left( 5-1 \right)d=26\].
Simplifying the above equation, we have \[a+4d=26.....\left( 1 \right)\].
Substituting \[n=9\] in the above formula, we have \[{{a}_{9}}=a+\left( 9-1 \right)d=42\].
Simplifying the above equation, we have \[a+8d=42.....\left( 2 \right)\].
We will now solve equation (1) and (2). Subtracting equation (1) from equation (2), we have \[a+8d-\left( a+4d \right)=42-26\].
Thus, we have \[4d=16\].
\[\Rightarrow d=4\]
So, the value of common difference d is \[d=4\].
Substituting the value \[d=4\] in equation (1), we have \[a+4\left( 4 \right)=26\].
Thus, we have \[a=26-16=10\].
Thus, the first term of AP is \[a=10\].
We will now evaluate the sum of the first 15 terms of AP.
We know that the sum of first n terms of AP is given by \[{{S}_{n}}=\dfrac{n}{2}[2a+\left( n-1 \right)d]\].
Substituting \[n=15,a=10,d=4\] in the above equation, we have \[{{S}_{15}}=\dfrac{15}{2}[2\left( 10 \right)+\left( 15-1 \right)4]\].
Simplifying the above expression, we have \[{{S}_{15}}=570\].
Hence, the sum of the first 15 terms of an AP whose fifth and ninth terms are 26 and 42 respectively is given by 570.
Note: Arithmetic Progression is a sequence of numbers such that the difference between any two consecutive terms is a constant. To find the sum of the first 15 terms, we can find all the 15 terms and then add them to get their sum. However, it will be very time consuming. So, it’s better to use the formula of finding sum of n terms to AP.
Complete step-by-step answer:
We have to find the sum of the first 15 terms of an AP whose fifth term is 26 and ninth term is 42.
We will assume that the first term of an AP is given by a and the common difference is given by d. We will now write any general term of an AP.
So, we can write the\[{{n}^{th}}\] term of AP as \[{{a}_{n}}=a+\left( n-1 \right)d\].
Substituting \[n=5\] in the above equation, we have \[{{a}_{5}}=a+\left( 5-1 \right)d=26\].
Simplifying the above equation, we have \[a+4d=26.....\left( 1 \right)\].
Substituting \[n=9\] in the above formula, we have \[{{a}_{9}}=a+\left( 9-1 \right)d=42\].
Simplifying the above equation, we have \[a+8d=42.....\left( 2 \right)\].
We will now solve equation (1) and (2). Subtracting equation (1) from equation (2), we have \[a+8d-\left( a+4d \right)=42-26\].
Thus, we have \[4d=16\].
\[\Rightarrow d=4\]
So, the value of common difference d is \[d=4\].
Substituting the value \[d=4\] in equation (1), we have \[a+4\left( 4 \right)=26\].
Thus, we have \[a=26-16=10\].
Thus, the first term of AP is \[a=10\].
We will now evaluate the sum of the first 15 terms of AP.
We know that the sum of first n terms of AP is given by \[{{S}_{n}}=\dfrac{n}{2}[2a+\left( n-1 \right)d]\].
Substituting \[n=15,a=10,d=4\] in the above equation, we have \[{{S}_{15}}=\dfrac{15}{2}[2\left( 10 \right)+\left( 15-1 \right)4]\].
Simplifying the above expression, we have \[{{S}_{15}}=570\].
Hence, the sum of the first 15 terms of an AP whose fifth and ninth terms are 26 and 42 respectively is given by 570.
Note: Arithmetic Progression is a sequence of numbers such that the difference between any two consecutive terms is a constant. To find the sum of the first 15 terms, we can find all the 15 terms and then add them to get their sum. However, it will be very time consuming. So, it’s better to use the formula of finding sum of n terms to AP.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Electrical Field of Charged Spherical Shell - JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
