
Find the sum \[2,3\dfrac{1}{4},4\dfrac{1}{2},\]…..To \[20\]terms.
Answer
219.3k+ views
Hint:-Here, this is a term of $AP$so we apply summation of $n$terms of$AP$.
Given series is\[2,3\dfrac{1}{4},4\dfrac{1}{2},\]…..Up to \[20\]terms.
The given series can be written as$\dfrac{8}{4},\dfrac{{13}}{4},\dfrac{{18}}{4}$,……to \[20\] terms.
Take $\dfrac{1}{4}$ common we get
$ \Rightarrow \dfrac{1}{4}(8 + 13 + 18 + ......)$ To \[20\] terms.
Observe that ${\text{8,13,18}}$…… is in Arithmetic Progression with first term $8$and$5$as common difference
So, the sum of first\[20\] terms in that series will be
$ = \dfrac{1}{4}\left( {\dfrac{{20}}{2}\left( {2 \times 8 + (20 - 1) \times 5} \right)} \right)$ $\because {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
Here $n = $ number of terms, $a = $ first term and $d = $ common difference.
${\text{ = }}\dfrac{1}{4}(1110) = \dfrac{{555}}{2}$ Answer.
Note: - Whenever such type of series is given first convert into simple form and then find which series is this. Then apply the formula of that series to get the answer.
Given series is\[2,3\dfrac{1}{4},4\dfrac{1}{2},\]…..Up to \[20\]terms.
The given series can be written as$\dfrac{8}{4},\dfrac{{13}}{4},\dfrac{{18}}{4}$,……to \[20\] terms.
Take $\dfrac{1}{4}$ common we get
$ \Rightarrow \dfrac{1}{4}(8 + 13 + 18 + ......)$ To \[20\] terms.
Observe that ${\text{8,13,18}}$…… is in Arithmetic Progression with first term $8$and$5$as common difference
So, the sum of first\[20\] terms in that series will be
$ = \dfrac{1}{4}\left( {\dfrac{{20}}{2}\left( {2 \times 8 + (20 - 1) \times 5} \right)} \right)$ $\because {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
Here $n = $ number of terms, $a = $ first term and $d = $ common difference.
${\text{ = }}\dfrac{1}{4}(1110) = \dfrac{{555}}{2}$ Answer.
Note: - Whenever such type of series is given first convert into simple form and then find which series is this. Then apply the formula of that series to get the answer.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

