
Find the solution of \[ydx - xdy + \log xdx = 0\]
A. \[y - \log x - 1 = C\]
B. \[x + \log y + 1 = Cx\]
C. \[y + \log x + 1 = Cx\]
D. \[y + \log x - 1 = Cx\]
Answer
216.6k+ views
Hint: First we rewrite the given equation with the form of \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] . Then we compare the given differential equation with the general equation to find the \[P(x)\] and apply the IF formula to calculate the integrating factor of the given differential equation.
Formula Used:
The general form of Linear Differential Equation \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\], \[y.IF = \int {Q.IFdx} + C\]and Integration by parts is \[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\].
Complete step by step solution:
Separating \[dx\] and \[dy\] in RHS and LHS we will get,
\[ydx - xdy + \log xdx = 0\]
\[ \Rightarrow xdy = \left( {y + \log x} \right)dx\]
Converting the equation in the form of \[\dfrac{{dy}}{{dx}}\] we will get,
\[\dfrac{{dy}}{{dx}} = \dfrac{y}{x} + \dfrac{{\log x}}{x}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{x} = \dfrac{{\log x}}{x}\] ----- (i)
From equation (i) we can clearly see that it is the Linear Differential Equation in terms of \[y\] where the general form of Linear Differential Equation is \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] where \[P(x) = \left( { - \dfrac{1}{x}} \right)\] and \[Q(x) = \dfrac{{\log x}}{x}\] .
Now we will be finding the Integrating Factor whose formula is \[{e^{\int {Pdx} }}\] .
\[{e^{\int {Pdx} }}\]
\[ = {e^{\int {\dfrac{{ - 1}}{x}dx} }}\]
Integrating and we get
\[ = {e^{ - \log x}}\]
Using the Property of \[\log \] and we get
\[ = {e^{\log {x^{ - 1}}}}\]
Therefore \[{e^{\log {x^{ - 1}}}}\] is equal to \[{x^{ - 1}}\]
Integrating factor,
\[IF = \dfrac{1}{x}\]
According to linear differential theorem,
\[y \cdot IF = \int {Q(x) \cdot IFdx} + C\] , where \[C\] is a constant of integration.
Put the value of \[IF\] and \[Q(x)\] and integrate the following,
\[ \Rightarrow y \cdot \dfrac{1}{x} = \int {\dfrac{{\log x}}{x} \times \dfrac{1}{x}dx} + C\]
\[ \Rightarrow \dfrac{y}{x} = \int {\log x \times \dfrac{1}{{{x^2}}}dx} + C\] ………………..(ii)
Now, to integrate the equation (ii) we will be using Integration by Parts to proceed further,
Integration By Part - \[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\]
Where, \[u = \log x\] and \[v = \dfrac{1}{{{x^2}}}\]
Now, substituting the values of \[u\] and \[v\] in the formula, we will get,
\[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\]
\[ \Rightarrow \int {logx \times \dfrac{1}{{{x^2}}}{\rm{ }}dx} {\rm{ }} = {\rm{ lo}}gx\int {\dfrac{1}{{{x^2}}}{\rm{ }}dx} {\rm{ }} - {\rm{ }}\int {\dfrac{{d\left( {logx} \right)}}{{dx}}{\rm{ }}\left( {\int {\dfrac{1}{{{x^2}}}{\rm{ }}dx} } \right)} {\rm{ }}dx\]
After differentiating and integrating the terms in the above equation we will get,
\[ \Rightarrow \dfrac{y}{x} = logx \times \left( { - \dfrac{1}{x}} \right) - \int {\dfrac{1}{x}} \times \left( { - \dfrac{1}{x}} \right)dx + C\]
\[ \Rightarrow \dfrac{y}{x} = - \dfrac{{logx}}{x} + \left( { - \dfrac{1}{x}} \right) + C\]
\[ \Rightarrow \dfrac{y}{x} = \dfrac{{ - logx - 1 + Cx}}{x}\]
\[ \Rightarrow y = - logx - 1 + cx\]
\[ \Rightarrow y + \log x + 1 = Cx\]
Hence the correct option is (C).
Note: Students tries to the given equation directly without using the format \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] and for this reason they unable to solve the given differential equation.
Formula Used:
The general form of Linear Differential Equation \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\], \[y.IF = \int {Q.IFdx} + C\]and Integration by parts is \[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\].
Complete step by step solution:
Separating \[dx\] and \[dy\] in RHS and LHS we will get,
\[ydx - xdy + \log xdx = 0\]
\[ \Rightarrow xdy = \left( {y + \log x} \right)dx\]
Converting the equation in the form of \[\dfrac{{dy}}{{dx}}\] we will get,
\[\dfrac{{dy}}{{dx}} = \dfrac{y}{x} + \dfrac{{\log x}}{x}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{x} = \dfrac{{\log x}}{x}\] ----- (i)
From equation (i) we can clearly see that it is the Linear Differential Equation in terms of \[y\] where the general form of Linear Differential Equation is \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] where \[P(x) = \left( { - \dfrac{1}{x}} \right)\] and \[Q(x) = \dfrac{{\log x}}{x}\] .
Now we will be finding the Integrating Factor whose formula is \[{e^{\int {Pdx} }}\] .
\[{e^{\int {Pdx} }}\]
\[ = {e^{\int {\dfrac{{ - 1}}{x}dx} }}\]
Integrating and we get
\[ = {e^{ - \log x}}\]
Using the Property of \[\log \] and we get
\[ = {e^{\log {x^{ - 1}}}}\]
Therefore \[{e^{\log {x^{ - 1}}}}\] is equal to \[{x^{ - 1}}\]
Integrating factor,
\[IF = \dfrac{1}{x}\]
According to linear differential theorem,
\[y \cdot IF = \int {Q(x) \cdot IFdx} + C\] , where \[C\] is a constant of integration.
Put the value of \[IF\] and \[Q(x)\] and integrate the following,
\[ \Rightarrow y \cdot \dfrac{1}{x} = \int {\dfrac{{\log x}}{x} \times \dfrac{1}{x}dx} + C\]
\[ \Rightarrow \dfrac{y}{x} = \int {\log x \times \dfrac{1}{{{x^2}}}dx} + C\] ………………..(ii)
Now, to integrate the equation (ii) we will be using Integration by Parts to proceed further,
Integration By Part - \[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\]
Where, \[u = \log x\] and \[v = \dfrac{1}{{{x^2}}}\]
Now, substituting the values of \[u\] and \[v\] in the formula, we will get,
\[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\]
\[ \Rightarrow \int {logx \times \dfrac{1}{{{x^2}}}{\rm{ }}dx} {\rm{ }} = {\rm{ lo}}gx\int {\dfrac{1}{{{x^2}}}{\rm{ }}dx} {\rm{ }} - {\rm{ }}\int {\dfrac{{d\left( {logx} \right)}}{{dx}}{\rm{ }}\left( {\int {\dfrac{1}{{{x^2}}}{\rm{ }}dx} } \right)} {\rm{ }}dx\]
After differentiating and integrating the terms in the above equation we will get,
\[ \Rightarrow \dfrac{y}{x} = logx \times \left( { - \dfrac{1}{x}} \right) - \int {\dfrac{1}{x}} \times \left( { - \dfrac{1}{x}} \right)dx + C\]
\[ \Rightarrow \dfrac{y}{x} = - \dfrac{{logx}}{x} + \left( { - \dfrac{1}{x}} \right) + C\]
\[ \Rightarrow \dfrac{y}{x} = \dfrac{{ - logx - 1 + Cx}}{x}\]
\[ \Rightarrow y = - logx - 1 + cx\]
\[ \Rightarrow y + \log x + 1 = Cx\]
Hence the correct option is (C).
Note: Students tries to the given equation directly without using the format \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] and for this reason they unable to solve the given differential equation.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

