
Find the solution of \[ydx - xdy + \log xdx = 0\]
A. \[y - \log x - 1 = C\]
B. \[x + \log y + 1 = Cx\]
C. \[y + \log x + 1 = Cx\]
D. \[y + \log x - 1 = Cx\]
Answer
161.4k+ views
Hint: First we rewrite the given equation with the form of \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] . Then we compare the given differential equation with the general equation to find the \[P(x)\] and apply the IF formula to calculate the integrating factor of the given differential equation.
Formula Used:
The general form of Linear Differential Equation \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\], \[y.IF = \int {Q.IFdx} + C\]and Integration by parts is \[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\].
Complete step by step solution:
Separating \[dx\] and \[dy\] in RHS and LHS we will get,
\[ydx - xdy + \log xdx = 0\]
\[ \Rightarrow xdy = \left( {y + \log x} \right)dx\]
Converting the equation in the form of \[\dfrac{{dy}}{{dx}}\] we will get,
\[\dfrac{{dy}}{{dx}} = \dfrac{y}{x} + \dfrac{{\log x}}{x}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{x} = \dfrac{{\log x}}{x}\] ----- (i)
From equation (i) we can clearly see that it is the Linear Differential Equation in terms of \[y\] where the general form of Linear Differential Equation is \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] where \[P(x) = \left( { - \dfrac{1}{x}} \right)\] and \[Q(x) = \dfrac{{\log x}}{x}\] .
Now we will be finding the Integrating Factor whose formula is \[{e^{\int {Pdx} }}\] .
\[{e^{\int {Pdx} }}\]
\[ = {e^{\int {\dfrac{{ - 1}}{x}dx} }}\]
Integrating and we get
\[ = {e^{ - \log x}}\]
Using the Property of \[\log \] and we get
\[ = {e^{\log {x^{ - 1}}}}\]
Therefore \[{e^{\log {x^{ - 1}}}}\] is equal to \[{x^{ - 1}}\]
Integrating factor,
\[IF = \dfrac{1}{x}\]
According to linear differential theorem,
\[y \cdot IF = \int {Q(x) \cdot IFdx} + C\] , where \[C\] is a constant of integration.
Put the value of \[IF\] and \[Q(x)\] and integrate the following,
\[ \Rightarrow y \cdot \dfrac{1}{x} = \int {\dfrac{{\log x}}{x} \times \dfrac{1}{x}dx} + C\]
\[ \Rightarrow \dfrac{y}{x} = \int {\log x \times \dfrac{1}{{{x^2}}}dx} + C\] ………………..(ii)
Now, to integrate the equation (ii) we will be using Integration by Parts to proceed further,
Integration By Part - \[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\]
Where, \[u = \log x\] and \[v = \dfrac{1}{{{x^2}}}\]
Now, substituting the values of \[u\] and \[v\] in the formula, we will get,
\[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\]
\[ \Rightarrow \int {logx \times \dfrac{1}{{{x^2}}}{\rm{ }}dx} {\rm{ }} = {\rm{ lo}}gx\int {\dfrac{1}{{{x^2}}}{\rm{ }}dx} {\rm{ }} - {\rm{ }}\int {\dfrac{{d\left( {logx} \right)}}{{dx}}{\rm{ }}\left( {\int {\dfrac{1}{{{x^2}}}{\rm{ }}dx} } \right)} {\rm{ }}dx\]
After differentiating and integrating the terms in the above equation we will get,
\[ \Rightarrow \dfrac{y}{x} = logx \times \left( { - \dfrac{1}{x}} \right) - \int {\dfrac{1}{x}} \times \left( { - \dfrac{1}{x}} \right)dx + C\]
\[ \Rightarrow \dfrac{y}{x} = - \dfrac{{logx}}{x} + \left( { - \dfrac{1}{x}} \right) + C\]
\[ \Rightarrow \dfrac{y}{x} = \dfrac{{ - logx - 1 + Cx}}{x}\]
\[ \Rightarrow y = - logx - 1 + cx\]
\[ \Rightarrow y + \log x + 1 = Cx\]
Hence the correct option is (C).
Note: Students tries to the given equation directly without using the format \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] and for this reason they unable to solve the given differential equation.
Formula Used:
The general form of Linear Differential Equation \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\], \[y.IF = \int {Q.IFdx} + C\]and Integration by parts is \[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\].
Complete step by step solution:
Separating \[dx\] and \[dy\] in RHS and LHS we will get,
\[ydx - xdy + \log xdx = 0\]
\[ \Rightarrow xdy = \left( {y + \log x} \right)dx\]
Converting the equation in the form of \[\dfrac{{dy}}{{dx}}\] we will get,
\[\dfrac{{dy}}{{dx}} = \dfrac{y}{x} + \dfrac{{\log x}}{x}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{x} = \dfrac{{\log x}}{x}\] ----- (i)
From equation (i) we can clearly see that it is the Linear Differential Equation in terms of \[y\] where the general form of Linear Differential Equation is \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] where \[P(x) = \left( { - \dfrac{1}{x}} \right)\] and \[Q(x) = \dfrac{{\log x}}{x}\] .
Now we will be finding the Integrating Factor whose formula is \[{e^{\int {Pdx} }}\] .
\[{e^{\int {Pdx} }}\]
\[ = {e^{\int {\dfrac{{ - 1}}{x}dx} }}\]
Integrating and we get
\[ = {e^{ - \log x}}\]
Using the Property of \[\log \] and we get
\[ = {e^{\log {x^{ - 1}}}}\]
Therefore \[{e^{\log {x^{ - 1}}}}\] is equal to \[{x^{ - 1}}\]
Integrating factor,
\[IF = \dfrac{1}{x}\]
According to linear differential theorem,
\[y \cdot IF = \int {Q(x) \cdot IFdx} + C\] , where \[C\] is a constant of integration.
Put the value of \[IF\] and \[Q(x)\] and integrate the following,
\[ \Rightarrow y \cdot \dfrac{1}{x} = \int {\dfrac{{\log x}}{x} \times \dfrac{1}{x}dx} + C\]
\[ \Rightarrow \dfrac{y}{x} = \int {\log x \times \dfrac{1}{{{x^2}}}dx} + C\] ………………..(ii)
Now, to integrate the equation (ii) we will be using Integration by Parts to proceed further,
Integration By Part - \[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\]
Where, \[u = \log x\] and \[v = \dfrac{1}{{{x^2}}}\]
Now, substituting the values of \[u\] and \[v\] in the formula, we will get,
\[\int {u{\rm{ }}v{\rm{ }}dx} {\rm{ }} = {\rm{ }}u\int v {\rm{ }}dx{\rm{ }} - {\rm{ }}\int {\dfrac{{du}}{{dx}}{\rm{ }}\left( {\int v {\rm{ }}dx} \right)} {\rm{ }}dx\]
\[ \Rightarrow \int {logx \times \dfrac{1}{{{x^2}}}{\rm{ }}dx} {\rm{ }} = {\rm{ lo}}gx\int {\dfrac{1}{{{x^2}}}{\rm{ }}dx} {\rm{ }} - {\rm{ }}\int {\dfrac{{d\left( {logx} \right)}}{{dx}}{\rm{ }}\left( {\int {\dfrac{1}{{{x^2}}}{\rm{ }}dx} } \right)} {\rm{ }}dx\]
After differentiating and integrating the terms in the above equation we will get,
\[ \Rightarrow \dfrac{y}{x} = logx \times \left( { - \dfrac{1}{x}} \right) - \int {\dfrac{1}{x}} \times \left( { - \dfrac{1}{x}} \right)dx + C\]
\[ \Rightarrow \dfrac{y}{x} = - \dfrac{{logx}}{x} + \left( { - \dfrac{1}{x}} \right) + C\]
\[ \Rightarrow \dfrac{y}{x} = \dfrac{{ - logx - 1 + Cx}}{x}\]
\[ \Rightarrow y = - logx - 1 + cx\]
\[ \Rightarrow y + \log x + 1 = Cx\]
Hence the correct option is (C).
Note: Students tries to the given equation directly without using the format \[\dfrac{{dy}}{{dx}} + P(x)y = Q(x)\] and for this reason they unable to solve the given differential equation.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
