
Find the solution of a differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Answer
232.8k+ views
Hint: First, simplify the given differential equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\]. Then calculate the integrating factor of the equation. Solve the differential equation using the integrating factor method for first order to get the solution of the given differential equation.
Formula used:
Integrating factor of a first order differential equation \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] is: \[I.F. = {e^{\int {P\left( x \right)dx} }}\]
The solution of a differential equation is: \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\]
\[\int {\sec^{2}x} dx = \tan x\]
Complete step by step solution:
The given differential equation is \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Let’s simplify the above equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\].
\[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \tan^{2}x + y\tan^{2}x + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Divide both sides by \[\tan x\].
\[\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {\dfrac{{1 + \tan^{2}x}}{{\tan x}}} \right)y = \dfrac{{ - \tan^{2}x}}{{\tan x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\dfrac{1}{{\tan x}} + \tan x} \right)y = - \tan x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\cot x + \tan x} \right)y = - \tan x\]
Compare the above equation with the general first order differential equation.
We get,
\[P\left( x \right) = \left( {\cot x + \tan x} \right)\], and \[Q\left( x \right) = - \tan x\]
Now calculate the integrating factor of the above first order differential equation.
\[I.F. = {e^{\int {\left( {\cot x + \tan x} \right)dx} }}\]
\[ \Rightarrow I.F. = {e^{ln \sin x + ln \sec x}}\]
Apply the logarithmic identity \[ln\left( a \right) + ln\left( b \right) = ln\left( {ab} \right)\].
\[I.F. = {e^{ln \left( {\sin x \sec x} \right)}}\]
Use the trigonometric ratio \[\sec x = \dfrac{1}{{\cos x}}\] .
\[I.F. = {e^{ln \left( {sin x \dfrac{1}{{\cos x}}} \right)}}\]
\[ \Rightarrow I.F. = {e^{ln \left( {\tan x} \right)}}\]
Now apply the logarithmic property \[{e^{ln \left( x \right)}} = x\].
\[I.F. = \tan x\]
Multiply both sides of the differential equation by the integrating factor.
\[\tan x\dfrac{{dy}}{{dx}} + \tan x\left( {\cot x + \tan x} \right)y = - \tan^{2} x\]
\[ \Rightarrow \tan x\dfrac{{dy}}{{dx}} + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[\tan x\dfrac{{dy}}{{dx}} + \left( {\sec^{2}x} \right)y = - \tan^{2}x\]
\[\dfrac{{d}}{{dx}}\left( {y\tan x} \right) = - \tan^{2}x\]
Now calculate the solution of the given differential equation by integrating both sides.
We get,
\[\int {\dfrac{{d}}{{dx}}\left( {y\tan x} \right)} = - \int {\tan^{2}x} dx\]
\[ \Rightarrow y\tan x = - \int {\tan^{2}x} dx\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[y\tan x = - \int {\left( {\sec^{2}x - 1} \right)} dx\]
\[ \Rightarrow y\tan x = - \tan x + x + C\] , where \[C\] is the integration constant.
Hence the solution of the differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\] is \[y\tan x = - \tan x + x + C\].
Note: Students often get confused about the integrating factor method for the first-order differential equation.
Steps to solve the first order differential equation:
Step 1: Compare differential equation with the general form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] and find the values of \[P\left( x \right)\] and \[Q\left( x \right)\].
Step 2: Calculate the integrating factor.
Step 3: Multiply both sides of the differential equation by the integrating factor.
Step 4: In the end, integrate the equation and get the solution in the form \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\].
Formula used:
Integrating factor of a first order differential equation \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] is: \[I.F. = {e^{\int {P\left( x \right)dx} }}\]
The solution of a differential equation is: \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\]
\[\int {\sec^{2}x} dx = \tan x\]
Complete step by step solution:
The given differential equation is \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Let’s simplify the above equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\].
\[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \tan^{2}x + y\tan^{2}x + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Divide both sides by \[\tan x\].
\[\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {\dfrac{{1 + \tan^{2}x}}{{\tan x}}} \right)y = \dfrac{{ - \tan^{2}x}}{{\tan x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\dfrac{1}{{\tan x}} + \tan x} \right)y = - \tan x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\cot x + \tan x} \right)y = - \tan x\]
Compare the above equation with the general first order differential equation.
We get,
\[P\left( x \right) = \left( {\cot x + \tan x} \right)\], and \[Q\left( x \right) = - \tan x\]
Now calculate the integrating factor of the above first order differential equation.
\[I.F. = {e^{\int {\left( {\cot x + \tan x} \right)dx} }}\]
\[ \Rightarrow I.F. = {e^{ln \sin x + ln \sec x}}\]
Apply the logarithmic identity \[ln\left( a \right) + ln\left( b \right) = ln\left( {ab} \right)\].
\[I.F. = {e^{ln \left( {\sin x \sec x} \right)}}\]
Use the trigonometric ratio \[\sec x = \dfrac{1}{{\cos x}}\] .
\[I.F. = {e^{ln \left( {sin x \dfrac{1}{{\cos x}}} \right)}}\]
\[ \Rightarrow I.F. = {e^{ln \left( {\tan x} \right)}}\]
Now apply the logarithmic property \[{e^{ln \left( x \right)}} = x\].
\[I.F. = \tan x\]
Multiply both sides of the differential equation by the integrating factor.
\[\tan x\dfrac{{dy}}{{dx}} + \tan x\left( {\cot x + \tan x} \right)y = - \tan^{2} x\]
\[ \Rightarrow \tan x\dfrac{{dy}}{{dx}} + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[\tan x\dfrac{{dy}}{{dx}} + \left( {\sec^{2}x} \right)y = - \tan^{2}x\]
\[\dfrac{{d}}{{dx}}\left( {y\tan x} \right) = - \tan^{2}x\]
Now calculate the solution of the given differential equation by integrating both sides.
We get,
\[\int {\dfrac{{d}}{{dx}}\left( {y\tan x} \right)} = - \int {\tan^{2}x} dx\]
\[ \Rightarrow y\tan x = - \int {\tan^{2}x} dx\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[y\tan x = - \int {\left( {\sec^{2}x - 1} \right)} dx\]
\[ \Rightarrow y\tan x = - \tan x + x + C\] , where \[C\] is the integration constant.
Hence the solution of the differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\] is \[y\tan x = - \tan x + x + C\].
Note: Students often get confused about the integrating factor method for the first-order differential equation.
Steps to solve the first order differential equation:
Step 1: Compare differential equation with the general form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] and find the values of \[P\left( x \right)\] and \[Q\left( x \right)\].
Step 2: Calculate the integrating factor.
Step 3: Multiply both sides of the differential equation by the integrating factor.
Step 4: In the end, integrate the equation and get the solution in the form \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

