
Find the solution of a differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Answer
164.4k+ views
Hint: First, simplify the given differential equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\]. Then calculate the integrating factor of the equation. Solve the differential equation using the integrating factor method for first order to get the solution of the given differential equation.
Formula used:
Integrating factor of a first order differential equation \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] is: \[I.F. = {e^{\int {P\left( x \right)dx} }}\]
The solution of a differential equation is: \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\]
\[\int {\sec^{2}x} dx = \tan x\]
Complete step by step solution:
The given differential equation is \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Let’s simplify the above equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\].
\[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \tan^{2}x + y\tan^{2}x + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Divide both sides by \[\tan x\].
\[\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {\dfrac{{1 + \tan^{2}x}}{{\tan x}}} \right)y = \dfrac{{ - \tan^{2}x}}{{\tan x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\dfrac{1}{{\tan x}} + \tan x} \right)y = - \tan x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\cot x + \tan x} \right)y = - \tan x\]
Compare the above equation with the general first order differential equation.
We get,
\[P\left( x \right) = \left( {\cot x + \tan x} \right)\], and \[Q\left( x \right) = - \tan x\]
Now calculate the integrating factor of the above first order differential equation.
\[I.F. = {e^{\int {\left( {\cot x + \tan x} \right)dx} }}\]
\[ \Rightarrow I.F. = {e^{ln \sin x + ln \sec x}}\]
Apply the logarithmic identity \[ln\left( a \right) + ln\left( b \right) = ln\left( {ab} \right)\].
\[I.F. = {e^{ln \left( {\sin x \sec x} \right)}}\]
Use the trigonometric ratio \[\sec x = \dfrac{1}{{\cos x}}\] .
\[I.F. = {e^{ln \left( {sin x \dfrac{1}{{\cos x}}} \right)}}\]
\[ \Rightarrow I.F. = {e^{ln \left( {\tan x} \right)}}\]
Now apply the logarithmic property \[{e^{ln \left( x \right)}} = x\].
\[I.F. = \tan x\]
Multiply both sides of the differential equation by the integrating factor.
\[\tan x\dfrac{{dy}}{{dx}} + \tan x\left( {\cot x + \tan x} \right)y = - \tan^{2} x\]
\[ \Rightarrow \tan x\dfrac{{dy}}{{dx}} + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[\tan x\dfrac{{dy}}{{dx}} + \left( {\sec^{2}x} \right)y = - \tan^{2}x\]
\[\dfrac{{d}}{{dx}}\left( {y\tan x} \right) = - \tan^{2}x\]
Now calculate the solution of the given differential equation by integrating both sides.
We get,
\[\int {\dfrac{{d}}{{dx}}\left( {y\tan x} \right)} = - \int {\tan^{2}x} dx\]
\[ \Rightarrow y\tan x = - \int {\tan^{2}x} dx\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[y\tan x = - \int {\left( {\sec^{2}x - 1} \right)} dx\]
\[ \Rightarrow y\tan x = - \tan x + x + C\] , where \[C\] is the integration constant.
Hence the solution of the differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\] is \[y\tan x = - \tan x + x + C\].
Note: Students often get confused about the integrating factor method for the first-order differential equation.
Steps to solve the first order differential equation:
Step 1: Compare differential equation with the general form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] and find the values of \[P\left( x \right)\] and \[Q\left( x \right)\].
Step 2: Calculate the integrating factor.
Step 3: Multiply both sides of the differential equation by the integrating factor.
Step 4: In the end, integrate the equation and get the solution in the form \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\].
Formula used:
Integrating factor of a first order differential equation \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] is: \[I.F. = {e^{\int {P\left( x \right)dx} }}\]
The solution of a differential equation is: \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\]
\[\int {\sec^{2}x} dx = \tan x\]
Complete step by step solution:
The given differential equation is \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Let’s simplify the above equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\].
\[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \tan^{2}x + y\tan^{2}x + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Divide both sides by \[\tan x\].
\[\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {\dfrac{{1 + \tan^{2}x}}{{\tan x}}} \right)y = \dfrac{{ - \tan^{2}x}}{{\tan x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\dfrac{1}{{\tan x}} + \tan x} \right)y = - \tan x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\cot x + \tan x} \right)y = - \tan x\]
Compare the above equation with the general first order differential equation.
We get,
\[P\left( x \right) = \left( {\cot x + \tan x} \right)\], and \[Q\left( x \right) = - \tan x\]
Now calculate the integrating factor of the above first order differential equation.
\[I.F. = {e^{\int {\left( {\cot x + \tan x} \right)dx} }}\]
\[ \Rightarrow I.F. = {e^{ln \sin x + ln \sec x}}\]
Apply the logarithmic identity \[ln\left( a \right) + ln\left( b \right) = ln\left( {ab} \right)\].
\[I.F. = {e^{ln \left( {\sin x \sec x} \right)}}\]
Use the trigonometric ratio \[\sec x = \dfrac{1}{{\cos x}}\] .
\[I.F. = {e^{ln \left( {sin x \dfrac{1}{{\cos x}}} \right)}}\]
\[ \Rightarrow I.F. = {e^{ln \left( {\tan x} \right)}}\]
Now apply the logarithmic property \[{e^{ln \left( x \right)}} = x\].
\[I.F. = \tan x\]
Multiply both sides of the differential equation by the integrating factor.
\[\tan x\dfrac{{dy}}{{dx}} + \tan x\left( {\cot x + \tan x} \right)y = - \tan^{2} x\]
\[ \Rightarrow \tan x\dfrac{{dy}}{{dx}} + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[\tan x\dfrac{{dy}}{{dx}} + \left( {\sec^{2}x} \right)y = - \tan^{2}x\]
\[\dfrac{{d}}{{dx}}\left( {y\tan x} \right) = - \tan^{2}x\]
Now calculate the solution of the given differential equation by integrating both sides.
We get,
\[\int {\dfrac{{d}}{{dx}}\left( {y\tan x} \right)} = - \int {\tan^{2}x} dx\]
\[ \Rightarrow y\tan x = - \int {\tan^{2}x} dx\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[y\tan x = - \int {\left( {\sec^{2}x - 1} \right)} dx\]
\[ \Rightarrow y\tan x = - \tan x + x + C\] , where \[C\] is the integration constant.
Hence the solution of the differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\] is \[y\tan x = - \tan x + x + C\].
Note: Students often get confused about the integrating factor method for the first-order differential equation.
Steps to solve the first order differential equation:
Step 1: Compare differential equation with the general form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] and find the values of \[P\left( x \right)\] and \[Q\left( x \right)\].
Step 2: Calculate the integrating factor.
Step 3: Multiply both sides of the differential equation by the integrating factor.
Step 4: In the end, integrate the equation and get the solution in the form \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
