
Find the solution of a differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Answer
216.3k+ views
Hint: First, simplify the given differential equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\]. Then calculate the integrating factor of the equation. Solve the differential equation using the integrating factor method for first order to get the solution of the given differential equation.
Formula used:
Integrating factor of a first order differential equation \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] is: \[I.F. = {e^{\int {P\left( x \right)dx} }}\]
The solution of a differential equation is: \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\]
\[\int {\sec^{2}x} dx = \tan x\]
Complete step by step solution:
The given differential equation is \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Let’s simplify the above equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\].
\[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \tan^{2}x + y\tan^{2}x + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Divide both sides by \[\tan x\].
\[\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {\dfrac{{1 + \tan^{2}x}}{{\tan x}}} \right)y = \dfrac{{ - \tan^{2}x}}{{\tan x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\dfrac{1}{{\tan x}} + \tan x} \right)y = - \tan x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\cot x + \tan x} \right)y = - \tan x\]
Compare the above equation with the general first order differential equation.
We get,
\[P\left( x \right) = \left( {\cot x + \tan x} \right)\], and \[Q\left( x \right) = - \tan x\]
Now calculate the integrating factor of the above first order differential equation.
\[I.F. = {e^{\int {\left( {\cot x + \tan x} \right)dx} }}\]
\[ \Rightarrow I.F. = {e^{ln \sin x + ln \sec x}}\]
Apply the logarithmic identity \[ln\left( a \right) + ln\left( b \right) = ln\left( {ab} \right)\].
\[I.F. = {e^{ln \left( {\sin x \sec x} \right)}}\]
Use the trigonometric ratio \[\sec x = \dfrac{1}{{\cos x}}\] .
\[I.F. = {e^{ln \left( {sin x \dfrac{1}{{\cos x}}} \right)}}\]
\[ \Rightarrow I.F. = {e^{ln \left( {\tan x} \right)}}\]
Now apply the logarithmic property \[{e^{ln \left( x \right)}} = x\].
\[I.F. = \tan x\]
Multiply both sides of the differential equation by the integrating factor.
\[\tan x\dfrac{{dy}}{{dx}} + \tan x\left( {\cot x + \tan x} \right)y = - \tan^{2} x\]
\[ \Rightarrow \tan x\dfrac{{dy}}{{dx}} + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[\tan x\dfrac{{dy}}{{dx}} + \left( {\sec^{2}x} \right)y = - \tan^{2}x\]
\[\dfrac{{d}}{{dx}}\left( {y\tan x} \right) = - \tan^{2}x\]
Now calculate the solution of the given differential equation by integrating both sides.
We get,
\[\int {\dfrac{{d}}{{dx}}\left( {y\tan x} \right)} = - \int {\tan^{2}x} dx\]
\[ \Rightarrow y\tan x = - \int {\tan^{2}x} dx\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[y\tan x = - \int {\left( {\sec^{2}x - 1} \right)} dx\]
\[ \Rightarrow y\tan x = - \tan x + x + C\] , where \[C\] is the integration constant.
Hence the solution of the differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\] is \[y\tan x = - \tan x + x + C\].
Note: Students often get confused about the integrating factor method for the first-order differential equation.
Steps to solve the first order differential equation:
Step 1: Compare differential equation with the general form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] and find the values of \[P\left( x \right)\] and \[Q\left( x \right)\].
Step 2: Calculate the integrating factor.
Step 3: Multiply both sides of the differential equation by the integrating factor.
Step 4: In the end, integrate the equation and get the solution in the form \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\].
Formula used:
Integrating factor of a first order differential equation \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] is: \[I.F. = {e^{\int {P\left( x \right)dx} }}\]
The solution of a differential equation is: \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\]
\[\int {\sec^{2}x} dx = \tan x\]
Complete step by step solution:
The given differential equation is \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\].
Let’s simplify the above equation in the form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\].
\[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \tan^{2}x + y\tan^{2}x + y = 0\]
\[ \Rightarrow \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Divide both sides by \[\tan x\].
\[\left( {\dfrac{{dy}}{{dx}}} \right) + \left( {\dfrac{{1 + \tan^{2}x}}{{\tan x}}} \right)y = \dfrac{{ - \tan^{2}x}}{{\tan x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\dfrac{1}{{\tan x}} + \tan x} \right)y = - \tan x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} + \left( {\cot x + \tan x} \right)y = - \tan x\]
Compare the above equation with the general first order differential equation.
We get,
\[P\left( x \right) = \left( {\cot x + \tan x} \right)\], and \[Q\left( x \right) = - \tan x\]
Now calculate the integrating factor of the above first order differential equation.
\[I.F. = {e^{\int {\left( {\cot x + \tan x} \right)dx} }}\]
\[ \Rightarrow I.F. = {e^{ln \sin x + ln \sec x}}\]
Apply the logarithmic identity \[ln\left( a \right) + ln\left( b \right) = ln\left( {ab} \right)\].
\[I.F. = {e^{ln \left( {\sin x \sec x} \right)}}\]
Use the trigonometric ratio \[\sec x = \dfrac{1}{{\cos x}}\] .
\[I.F. = {e^{ln \left( {sin x \dfrac{1}{{\cos x}}} \right)}}\]
\[ \Rightarrow I.F. = {e^{ln \left( {\tan x} \right)}}\]
Now apply the logarithmic property \[{e^{ln \left( x \right)}} = x\].
\[I.F. = \tan x\]
Multiply both sides of the differential equation by the integrating factor.
\[\tan x\dfrac{{dy}}{{dx}} + \tan x\left( {\cot x + \tan x} \right)y = - \tan^{2} x\]
\[ \Rightarrow \tan x\dfrac{{dy}}{{dx}} + \left( {1 + \tan^{2}x} \right)y = - \tan^{2}x\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[\tan x\dfrac{{dy}}{{dx}} + \left( {\sec^{2}x} \right)y = - \tan^{2}x\]
\[\dfrac{{d}}{{dx}}\left( {y\tan x} \right) = - \tan^{2}x\]
Now calculate the solution of the given differential equation by integrating both sides.
We get,
\[\int {\dfrac{{d}}{{dx}}\left( {y\tan x} \right)} = - \int {\tan^{2}x} dx\]
\[ \Rightarrow y\tan x = - \int {\tan^{2}x} dx\]
Use the trigonometric identity \[\tan^{2} x = \sec^{2} x - 1\].
\[y\tan x = - \int {\left( {\sec^{2}x - 1} \right)} dx\]
\[ \Rightarrow y\tan x = - \tan x + x + C\] , where \[C\] is the integration constant.
Hence the solution of the differential equation \[\left( {1 + y} \right)\tan^{2}x + \tan x\left( {\dfrac{{dy}}{{dx}}} \right) + y = 0\] is \[y\tan x = - \tan x + x + C\].
Note: Students often get confused about the integrating factor method for the first-order differential equation.
Steps to solve the first order differential equation:
Step 1: Compare differential equation with the general form \[\dfrac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right)\] and find the values of \[P\left( x \right)\] and \[Q\left( x \right)\].
Step 2: Calculate the integrating factor.
Step 3: Multiply both sides of the differential equation by the integrating factor.
Step 4: In the end, integrate the equation and get the solution in the form \[\left( {I.F.} \right)y = \int {\left( {I.F.} \right)Q\left( x \right)} dx + C\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

