
Find the second and third derivative of a function\[y=\sin x\].
Answer
214.5k+ views
Hint: You can use the first principle method to find derivatives of \[\sin x\] and
\[\cos x\]or directly use the differentiation of \[\sin x\]and \[\cos x\]wherever required.
We have the given function as –
\[y=\sin x-(1)\]
We know that differentiation of any function can be calculated with the help of first principle method of differentiation as stated below: -
If we have a function \[f\left( x \right)\] which is continuous and differentiable for any real number then differentiation of it at any point \[c\] can be stated as:
\[{{f}^{'}}(c)=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)-f(c)}{x-c}-(2)\]
Applying LHL (left hand limit) and RHL (right hand limit) to equation (2) as,
For RHL:
\[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(c+h)-f(c)}{h}\]
And LHL can be written as,
\[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(c-h)-f(c)}{-h}\]
And we can verify that values got from LHL and RHL should be equal.
Hence, applying first principle method of differentiation we can find derivative of,
\[y=\sin x\]as \[\cos x\].
Hence, \[\dfrac{dy}{dx}=\dfrac{d}{dx}(\sin x)=\cos x-(3)\]
Now, coming to the question part, we need to find the second and third derivative of the function. So, differentiating equation (3) again
\[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}(\cos x)=-\sin x\]
(Differentiation of \[\cos x\] can also be proved by first principle method of differentiation).
Hence, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\sin x-(4)\]
Now, for the third derivative of the given function; differentiate equation (4) again, as: -
\[\begin{align}
& \dfrac{d}{dx}\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{dx}\left( -\sin x \right) \\
& \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{dx}\left( -\sin x \right) \\
\end{align}\]
Using equation (3) as \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]we can get,
\[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\cos x-(5)\]
Therefore, derivative of \[\sin x\] is \[\cos x\]and second and third derivative of \[\sin x\] are
(\[-\sin x\]) and (\[-\cos x\]) respectively from equation (4) and (5).
Note: One can go wrong while putting the values of \[\dfrac{d}{dx}(\cos x)\] and \[\dfrac{d}{dx}(\sin x)\]. Student can write \[\dfrac{d}{dx}(\sin x)=-\cos x\]or \[\dfrac{d}{dx}(\cos x)=\sin x\](confusion).
We can prove \[\dfrac{d}{dx}(\sin x)=\cos x\]by first principle method as written in the
solution. Let us prove it.
We have formula for first principle method as: -
\[{{f}^{'}}=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)-f(c)}{x-c}\]
\[f(x)=\sin x\]and \[f(c)=\sin c\]
\[\underset{x\to c}{\mathop{\lim }}\,\dfrac{\sin x-\sin c}{x-c}-(1)\]
We have formula for \[\sin C-\sin D\]as
\[\sin C-\sin D=2\sin \dfrac{C-D}{2}\cos \dfrac{C+D}{2}\]
Hence,
\[\sin x-\sin c=2\sin \dfrac{x-c}{2}\cos \dfrac{x+c}{2}\]
Putting above value in equation (1)
\[\begin{align}
& {{f}^{'}}(c)=\underset{x\to c}{\mathop{\lim }}\,\dfrac{2\sin \left( \dfrac{x-c}{2} \right)\cos
\left( \dfrac{x+c}{2} \right)}{x-c} \\
& f'(c)=\underset{x\to c}{\mathop{\lim }}\,\dfrac{2\sin \dfrac{\left( x-c \right)}{2}}{2\left( \dfrac{x-c}{2} \right)}\cos \left( \dfrac{x+c}{2} \right) \\
& {{f}^{'}}(c)=\underset{x\to c}{\mathop{\lim }}\,\dfrac{\sin \dfrac{\left( x-c \right)}{2}}{\left(
\dfrac{x-c}{2} \right)}\underset{x\to c}{\mathop{\lim }}\,\cos \left( \dfrac{x+c}{2} \right) \\
& {{f}^{'}}(c)=1\times \cos C=\cos C\left( \because \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \right) \\
\end{align}\]
Hence proved
\[\cos x\]or directly use the differentiation of \[\sin x\]and \[\cos x\]wherever required.
We have the given function as –
\[y=\sin x-(1)\]
We know that differentiation of any function can be calculated with the help of first principle method of differentiation as stated below: -
If we have a function \[f\left( x \right)\] which is continuous and differentiable for any real number then differentiation of it at any point \[c\] can be stated as:
\[{{f}^{'}}(c)=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)-f(c)}{x-c}-(2)\]
Applying LHL (left hand limit) and RHL (right hand limit) to equation (2) as,
For RHL:
\[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(c+h)-f(c)}{h}\]
And LHL can be written as,
\[\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(c-h)-f(c)}{-h}\]
And we can verify that values got from LHL and RHL should be equal.
Hence, applying first principle method of differentiation we can find derivative of,
\[y=\sin x\]as \[\cos x\].
Hence, \[\dfrac{dy}{dx}=\dfrac{d}{dx}(\sin x)=\cos x-(3)\]
Now, coming to the question part, we need to find the second and third derivative of the function. So, differentiating equation (3) again
\[\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}(\cos x)=-\sin x\]
(Differentiation of \[\cos x\] can also be proved by first principle method of differentiation).
Hence, \[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\sin x-(4)\]
Now, for the third derivative of the given function; differentiate equation (4) again, as: -
\[\begin{align}
& \dfrac{d}{dx}\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{dx}\left( -\sin x \right) \\
& \dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{dx}\left( -\sin x \right) \\
\end{align}\]
Using equation (3) as \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]we can get,
\[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=-\cos x-(5)\]
Therefore, derivative of \[\sin x\] is \[\cos x\]and second and third derivative of \[\sin x\] are
(\[-\sin x\]) and (\[-\cos x\]) respectively from equation (4) and (5).
Note: One can go wrong while putting the values of \[\dfrac{d}{dx}(\cos x)\] and \[\dfrac{d}{dx}(\sin x)\]. Student can write \[\dfrac{d}{dx}(\sin x)=-\cos x\]or \[\dfrac{d}{dx}(\cos x)=\sin x\](confusion).
We can prove \[\dfrac{d}{dx}(\sin x)=\cos x\]by first principle method as written in the
solution. Let us prove it.
We have formula for first principle method as: -
\[{{f}^{'}}=\underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)-f(c)}{x-c}\]
\[f(x)=\sin x\]and \[f(c)=\sin c\]
\[\underset{x\to c}{\mathop{\lim }}\,\dfrac{\sin x-\sin c}{x-c}-(1)\]
We have formula for \[\sin C-\sin D\]as
\[\sin C-\sin D=2\sin \dfrac{C-D}{2}\cos \dfrac{C+D}{2}\]
Hence,
\[\sin x-\sin c=2\sin \dfrac{x-c}{2}\cos \dfrac{x+c}{2}\]
Putting above value in equation (1)
\[\begin{align}
& {{f}^{'}}(c)=\underset{x\to c}{\mathop{\lim }}\,\dfrac{2\sin \left( \dfrac{x-c}{2} \right)\cos
\left( \dfrac{x+c}{2} \right)}{x-c} \\
& f'(c)=\underset{x\to c}{\mathop{\lim }}\,\dfrac{2\sin \dfrac{\left( x-c \right)}{2}}{2\left( \dfrac{x-c}{2} \right)}\cos \left( \dfrac{x+c}{2} \right) \\
& {{f}^{'}}(c)=\underset{x\to c}{\mathop{\lim }}\,\dfrac{\sin \dfrac{\left( x-c \right)}{2}}{\left(
\dfrac{x-c}{2} \right)}\underset{x\to c}{\mathop{\lim }}\,\cos \left( \dfrac{x+c}{2} \right) \\
& {{f}^{'}}(c)=1\times \cos C=\cos C\left( \because \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 \right) \\
\end{align}\]
Hence proved
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

